Neuroproteomics Using Short GeLC-SWATH: From the Evaluation of Proteome Changes to the Clarification of Protein Function

  • Sandra I. Anjo
  • Cátia Santa
  • Susana C. Saraiva
  • Karolina Freitas
  • Faraj Barah
  • Bruno Carreira
  • Inês Araújo
  • Bruno Manadas
Protocol
Part of the Neuromethods book series (NM, volume 127)

Abstract

Quantitative mass spectrometry approaches have been a valuable tool in neuroproteomics, being an important ally for the deeper understanding of proteome modulation of the nervous system. Although there are several quantitative mass spectrometry approaches, all of them still require the digestion of the proteins into peptides making this step critical for the success of this type of analysis. By turning into quantitative, these methods are not only focused on the capacity to improve the depth of proteome coverage but most importantly making it in a reproducible way. In line with several improvements in digestion procedures, the short GeLC approach was presented which consists in an adaptation of the common in-gel digestion methods, in which the electrophoretic separation is performed in approximately 1–2 cm of the gel. Therefore, short GeLC retains most of the advantages of in-gel digestion, namely, its high efficiency and compatibility, in a very reproducible method that proves to be particularly advantageous for quantitative mass spectrometry analyses. Moreover, the short GeLC approach combined with SWATH acquisition has been revealed as a promising method for reliable quantitative screenings in particular when applied to challenging samples such as membrane-enriched samples and to samples of limited amount such as biofluids.

In this chapter, a detailed description of the short GeLC-SWATH pipeline is presented and complemented with the presentation of some of its different applications in the neuroproteomics field. Among different applications, some examples were selected that can demonstrate the vast versatility of the short GeLC-SWATH, namely, its application in (1) the differential proteome analysis of brain tissues and biofluids, (2) the study of the interactome of plasma membrane receptors, and (3) its application in the evaluation of receptors’ cleavage by proteases. With these examples, the use of short GeLC-SWATH with difficult samples is covered, including membrane protein-enriched samples and samples with a large dynamic range or enriched in particular proteins, and its application in very complex experimental designs.

Key words

Short GeLC SWATH-MS In-gel digestion Quantitative neuroproteomics Mass spectrometry 

References

  1. 1.
    Kitchen RR, Rozowsky JS, Gerstein MB, Nairn AC (2014) Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 17(11):1491–1499. doi:10.1038/nn.3829 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299. doi:10.1146/annurev-biochem-061308-093216 CrossRefPubMedGoogle Scholar
  3. 3.
    Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717. doi:10.1074/mcp.O111.016717 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Switzar L, Giera M, Niessen WM (2013) Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 12(3):1067–1077. doi:10.1021/pr301201x CrossRefPubMedGoogle Scholar
  5. 5.
    Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965. doi:10.1007/s00216-012-6203-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Anjo SI, Santa C, Manadas B (2015) Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings. Proteomics 15(4):757–762. doi:10.1002/pmic.201400221 CrossRefPubMedGoogle Scholar
  7. 7.
    Granvogl B, Gruber P, Eichacker LA (2007) Standardisation of rapid in-gel digestion by mass spectrometry. Proteomics 7(5):642–654. doi:10.1002/pmic.200600607 CrossRefPubMedGoogle Scholar
  8. 8.
    Vowinckel J, Capuano F, Campbell K, Deery M, Lilley K, Ralser M (2014) The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000Res 2:272. doi:10.12688/f1000research.2-272.v2 PubMedCentralGoogle Scholar
  9. 9.
    Anjo SI, Lourenco AS, Melo MN, Santa C, Manadas B (2016) Unraveling mesenchymal stem cells’ dynamic secretome through nontargeted proteomics profiling. Methods Mol Biol 1416:521–549. doi:10.1007/978-1-4939-3584-0_32 CrossRefPubMedGoogle Scholar
  10. 10.
    Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333. doi:10.1002/elps.200305844 CrossRefPubMedGoogle Scholar
  11. 11.
    Tang WH, Shilov IV, Seymour SL (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7(9):3661–3667. doi:10.1021/pr070492f CrossRefPubMedGoogle Scholar
  12. 12.
    Sennels L, Bukowski-Wills JC, Rappsilber J (2009) Improved results in proteomics by use of local and peptide-class specific false discovery rates. BMC Bioinformatics 10:179. doi:10.1186/1471-2105-10-179 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800. doi:10.1371/journal.pone.0021800 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hulsen T, de Vlieg J, Alkema W (2008) BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9:488. doi:10.1186/1471-2164-9-488 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Goldwasser P, Feldman J (1997) Association of serum albumin and mortality risk. J Clin Epidemiol 50(6):693–703CrossRefPubMedGoogle Scholar
  16. 16.
    Engstrom G, Hedblad B, Berglund G, Janzon L, Lindgarde F (2007) Plasma levels of complement C3 is associated with development of hypertension: a longitudinal cohort study. J Hum Hypertens 21(4):276–282. doi:10.1038/sj.jhh.1002129 PubMedGoogle Scholar
  17. 17.
    Perttila J, Salo M, Peltola O (1990) Plasma fibronectin concentrations in blood products. Intensive Care Med 16(1):41–43CrossRefPubMedGoogle Scholar
  18. 18.
    Glovsky MM, Ward PA, Johnson KJ (2004) Complement determinations in human disease. Ann Allergy Asthma Immunol 93(6):513–522.; quiz 523–515, 605. doi:10.1016/S1081-1206(10)61257-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Liu Z, Cao J, Gao X, Ma Q, Ren J, Xue Y (2011) GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. PLoS One 6(4):e19001. doi:10.1371/journal.pone.0019001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lambert JP, Ivosev G, Couzens AL et al (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10:1239–1245Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Sandra I. Anjo
    • 1
    • 2
  • Cátia Santa
    • 1
    • 3
  • Susana C. Saraiva
    • 1
    • 4
  • Karolina Freitas
    • 1
    • 4
  • Faraj Barah
    • 1
  • Bruno Carreira
    • 5
    • 6
    • 7
  • Inês Araújo
    • 7
    • 8
    • 9
  • Bruno Manadas
    • 1
  1. 1.CNC-Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  3. 3.Institute for Interdisciplinary Research (III)University of CoimbraCoimbraPortugal
  4. 4.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  5. 5.Unidade de Saúde Familiar SantiagoACES Pinhal LitoralLeiriaPortugal
  6. 6.Polytechnic Institute of Leiria, School of Health Sciences (ESSLei—IPL)LeiriaPortugal
  7. 7.Center for Biomedical Research (CBMR)University of AlgarveFaroPortugal
  8. 8.Department of Biomedical Sciences and MedicineUniversity of AlgarveFaroPortugal
  9. 9.Algarve Biomedical CenterFaroPortugal

Personalised recommendations