Comprehensive Shotgun Proteomic Analyses of Oligodendrocytes Using Ion Mobility and Data-Independent Acquisition

  • Juliana S. Cassoli
  • Daniel Martins-de-Souza
Part of the Neuromethods book series (NM, volume 127)


Oligodendrocytes are a type of neuroglia that provide trophic support and axonal insulation of the central nervous system. A proliferating clonal oligodendrocyte cell line, named MO3.13, has been developed to enable the comprehension of the biological role of these cells in the central nervous system in a controled environment. In the present protocol, we established a comprehensive proteomic characterization of MO3.13 cells using 2D LC fractionation and ion mobility-enhanced data-independent MS analyses. The final dataset of identified proteins may consist a rich source of molecular information about oligodendrocytes. Also, it can help further studies using MO3.13 cells as a tool of investigation not only to oligodendrocyte maturation but also to diseases that have oligodendrocytes as key players.

Key words

Oligodendrocytes Proteome Data-independent analysis Ion mobility separation 2D LC fractionation 



J.S.C. and D.M.S. are funded by FAPESP (São Paulo Research Foundation, grants 2014/14881-1, 2013/08711-3, and 2014/10068-4). DMS is also funded by National Counsel of Technological and Scientific Development (CNPq), grant 460289/2014-4.


  1. 1.
    Gill AS, Binder DK (2007) Wilder Penfield, Pio del Rio-Hortega, and the discovery of oligodendroglia. Neurosurgery 60(5):940–948.; discussion 940–8. doi: 10.1227/01.neu.0000255448.97730.34 CrossRefPubMedGoogle Scholar
  2. 2.
    Mathey EK, Arthur A, Armati PJ (2010) CNS oligarchs; the rise of the oligodendrocyte in a neuron-centric culture. In: Mathey EK, Armati PJ (eds) The biology of oligodendrocytes. Cambridge University Press, New YorkGoogle Scholar
  3. 3.
    Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521. doi: 10.1038/nature11007 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Perez-Samartin A, Perez-Cerda F, Bakhtiari D, Matute C, Lowel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91(1):119–132. doi: 10.1016/j.neuron.2016.05.016 CrossRefPubMedGoogle Scholar
  5. 5.
    Ono K, Ikenaka K (2012) Lineage and development: oligodendrocytes. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    O'Meara RW, Ryan SD, Colognato H, Kothary R (2011) Derivation of enriched oligodendrocyte cultures and oligodendrocyte/neuron myelinating co-cultures from post-natal murine tissues. J Vis Exp 54. doi: 10.3791/3324
  7. 7.
    Emery B, Dugas JC (2013) Purification of oligodendrocyte lineage cells from mouse cortices by immunopanning. Cold Spring Harb Protoc 2013(9):854–868. doi: 10.1101/pdb.prot073973 CrossRefPubMedGoogle Scholar
  8. 8.
    McLaurin J, Trudel GC, Shaw IT, Antel JP, Cashman NR (1995) A human glial hybrid cell line differentially expressing genes subserving oligodendrocyte and astrocyte phenotype. J Neurobiol 26(2):283–293. doi: 10.1002/neu.480260212 CrossRefPubMedGoogle Scholar
  9. 9.
    Buntinx M, Vanderlocht J, Hellings N, Vandenabeele F, Lambrichts I, Raus J, Ameloot M, Stinissen P, Steels P (2003) Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: morphology and oligodendrocyte-specific gene expression. J Neurocytol 32(1):25–38. doi: 10.1023/a:1027324230923 CrossRefPubMedGoogle Scholar
  10. 10.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: mycoplasma genitalium. Electrophoresis 16(7):1090–1094CrossRefPubMedGoogle Scholar
  11. 11.
    Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 14(1):61–65Google Scholar
  12. 12.
    Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16(5):269–280. doi: 10.1038/nrm3970 CrossRefPubMedGoogle Scholar
  13. 13.
    Martins-de-Souza D.(2014) Shotgun proteomics: methods and protocols, vol 1156. Methods in molecular biology, 1 edn. Humana Press, New York. doi: 10.1007/978-1-4939-0685-7
  14. 14.
    Eyers CE, Gaskell S. Quantitative Proteomics (2014) New developments in mass spectrometry. Royal Society of Chemistry, Cambridge, UK. doi:  10.1039/9781782626985
  15. 15.
    Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10(4):1785–1793. doi: 10.1021/pr101060v CrossRefPubMedGoogle Scholar
  16. 16.
    Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201. doi: 10.1021/ac0498563 CrossRefPubMedGoogle Scholar
  17. 17.
    Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6):1683–1695. doi: 10.1002/pmic.200800562
  18. 18.
    Hu A, Noble WS, Wolf-Yadlin A (2016) Technical advances in proteomics: new developments in data-independent acquisition. F1000Res 5. doi: 10.12688/f1000research.7042.1
  19. 19.
    Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Muller M, Lisacek F (2015) Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15(5–6):964–980. doi:  10.1002/pmic.201400323
  20. 20.
    Martins-de-Souza D, Faça VM, Gozzo FC. DIA is not a new mass spectrometry acquisition method. Proteomics. 2017 Apr;17(7). doi:  10.1002/pmic.201700017
  21. 21.
    Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li G-Z, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77(7):2187–2200. doi: 10.1021/ac048455k CrossRefPubMedGoogle Scholar
  22. 22.
    Geromanos SJ, Hughes C, Ciavarini S, Vissers JPC, Langridge JI (2012) Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples. Anal Bioanal Chem 404(4):1127–1139. doi: 10.1007/s00216-012-6197-y CrossRefPubMedGoogle Scholar
  23. 23.
    Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11(2):167–170. doi: 10.1038/nmeth.2767 CrossRefPubMedGoogle Scholar
  24. 24.
    Distler U, Schmeisser MJ, Pelosi A, Reim D, Kuharev J, Weiczner R, Baumgart J, Boeckers TM, Nitsch R, Vogt J, Tenzer S (2014) In-depth protein profiling of the postsynaptic density from mouse hippocampus using data-independent acquisition proteomics. Proteomics 14(21–22):2607–2613. doi: 10.1002/pmic.201300520 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue BiologyInstitute of Biology, University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations