Protein Microarrays in Neurodegenerative Diseases

  • Pablo San Segundo-Acosta
  • María Garranzo-Asensio
  • Ana Montero-Calle
  • Carmen Oeo-Santos
  • Mayte Villalba
  • Ana Guzman-Aranguez
  • Rodrigo Barderas
Part of the Neuromethods book series (NM, volume 127)


Neurodegenerative diseases are characterized by an irreversible structural and functional neuronal loss. Despite the extensive molecular events produced by these set of diseases, leading to the final neuronal cell death, they are only partially understood. Therefore, there is an urgent need to find and elucidate molecular mechanisms underlying the formation and progression of these diseases to get an early diagnosis and find new therapeutic targets of intervention. Beyond mass spectrometry-based proteomics, antibody, protein, and phage microarrays are other proteomics potential tools for the identification of such alterations and get further insights into these devastating diseases. Here, we describe the utilization of antibody, protein, and phage microarrays, which offer such a combination of sensitivity, and cost-effective multiplexing capabilities that makes them an affordable strategy for neuroproteomics studies.

Key words

Neurodegenerative diseases Neurodegeneration Antibody Protein and phage micro-arrays Proteomics 



This work was supported by grant SAF2014-53209-R from the Ministerio de Economía y Competitividad and the support obtained from the ILoveScience crowdfunding platform. R.B. was a fellow of the Ramón y Cajal program of the Ministerio de Economía y Competitividad (Spain). P.S.A. is supported by a FPU fellowship from the Spanish Ministry of Education, Culture and Sport. M.G.A. and C.O.S. are supported by a contract of the Programa Operativo de Empleo Juvenil y la Iniciativa de Empleo Juvenil (YEI) with the participation of the Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid y del Fondo Social Europeo.


  1. 1.
    Trippier PC, Jansen Labby K, Hawker DD, Mataka JJ, Silverman RB (2013) Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J Med Chem 56(8):3121–3147. doi: 10.1021/jm3015926 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Solanki I, Parihar P, Parihar MS (2016) Neurodegenerative diseases: from available treatments to prospective herbal therapy. Neurochem Int 95:100–108. doi: 10.1016/j.neuint.2015.11.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10(10):1055–1063. doi: 10.1038/nm1113 CrossRefPubMedGoogle Scholar
  4. 4.
    Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP (2008) Epidemiology of Parkinson’s disease. J Neurol 255(Suppl 5):18–32. doi: 10.1007/s00415-008-5004-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Wang XP, Ding HL (2008) Alzheimer’s disease: epidemiology, genetics, and beyond. Neurosci Bull 24(2):105–109. doi: 10.1007/s12264-008-0105-7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT, National Institute on A, Alzheimer’s A (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11. doi: 10.1007/s00401-011-0910-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, Trojanowski JQ, Blennow K (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223(2):334–346. doi: 10.1016/j.expneurol.2009.09.024 CrossRefPubMedGoogle Scholar
  8. 8.
    Young AB (2009) Four decades of neurodegenerative disease research: how far we have come! J Neurosci 29(41):12722–12728. doi: 10.1523/Jneurosci.3767-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Invest 111(1):3–10. doi: 10.1172/Jci200317522 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gotovac K, Hajnsek S, Pasic MB, Pivac N, Boroveki F (2014) Personalized medicine in neurodegenerative diseases: how far away? Mol Diagn Ther 18(1):17–24. doi: 10.1007/s40291-013-0058-z CrossRefPubMedGoogle Scholar
  11. 11.
    Kazantsev AG (2009) New therapeutic strategies for treatment of neurodegenerative diseases. Curr Pharm Des 15(34):3917–3918CrossRefPubMedGoogle Scholar
  12. 12.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944CrossRefPubMedGoogle Scholar
  13. 13.
    Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32. doi: 10.1016/j.tibtech.2010.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144. doi: 10.1038/nrneurol.2010.4 CrossRefPubMedGoogle Scholar
  15. 15.
    Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC (2016) Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics 15(2):409–425. doi: 10.1074/mcp.R115.053330 CrossRefPubMedGoogle Scholar
  16. 16.
    Lovestone S, Guntert A, Hye A, Lynham S, Thambisetty M, Ward M (2007) Proteomics of Alzheimer’s disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics 4(2):227–238. doi: 10.1586/14789450.4.2.227
  17. 17.
    Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355. doi: 10.1038/nature19949 CrossRefPubMedGoogle Scholar
  18. 18.
    Jaeger PA, Lucin KM, Britschgi M, Vardarajan B, Huang RP, Kirby ED, Abbey R, Boeve BF, Boxer AL, Farrer LA, Finch N, Graff-Radford NR, Head E, Hoffree M, Huang R, Johns H, Karydas A, Knopman DS, Loboda A, Masliah E, Narasimhan R, Petersen RC, Podtelezhnikov A, Pradhan S, Rademakers R, Sun CH, Younkin SG, Miller BL, Ideker T, Wyss-Coray T (2016) Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol Neurodegener 11:31. doi: 10.1186/s13024-016-0095-2 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709. doi: 10.1038/nbt.1658 CrossRefPubMedGoogle Scholar
  20. 20.
    Zelaya MV, Perez-Valderrama E, de Morentin XM, Tunon T, Ferrer I, Luquin MR, Fernandez-Irigoyen J, Santamaria E (2015) Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget 6(37):39437–39456. doi: 10.18632/oncotarget.6254 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fasolo J, Im H, Snyder MP (2015) Probing high-density functional protein microarrays to detect protein-protein interactions. J Vis Exp 102:e51872. doi: 10.3791/51872 Google Scholar
  22. 22.
    LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9(1):14–19. doi: 10.1016/j.cbpa.2004.12.006 CrossRefPubMedGoogle Scholar
  23. 23.
    Mattoon DR, Schweitzer B (2009) Profiling protein interaction networks with functional protein microarrays. Methods Mol Biol 563:63–74. doi: 10.1007/978-1-60761-175-2_4 CrossRefPubMedGoogle Scholar
  24. 24.
    Moore CD, Ajala OZ, Zhu H (2016) Applications in high-content functional protein microarrays. Curr Opin Chem Biol 30:21–27. doi: 10.1016/j.cbpa.2015.10.013 CrossRefPubMedGoogle Scholar
  25. 25.
    Barderas R, Villar-Vázquez R, Casal JI (2014) Colorectal cancer circulating biomarkers. In: Preedy VR, Patel VB (eds) Biomarkers in cancer. Springer Netherlands, Dordrecht, pp 1–21. doi: 10.1007/978-94-007-7744-6_29-1 Google Scholar
  26. 26.
    Barderas R, Babel I, Casal JI (2010) Colorectal cancer proteomics, molecular characterization and biomarker discovery. Proteomics Clin Appl 4(2):159–178. doi: 10.1002/prca.200900131 CrossRefPubMedGoogle Scholar
  27. 27.
    Freckleton G, Lippman SI, Broach JR, Tavazoie S (2009) Microarray profiling of phage-display selections for rapid mapping of transcription factor-DNA interactions. PLoS Genet 5(4):e1000449. doi: 10.1371/journal.pgen.1000449 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Babel I, Barderas R, Diaz-Uriarte R, Moreno V, Suarez A, Fernandez-Acenero MJ, Salazar R, Capella G, Casal JI (2011) Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol Cell Proteomics 10(3):M110.001784. doi: 10.1074/mcp.M110.001784 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chatterjee M, Ionan A, Draghici S, Tainsky MA (2006) Epitomics: global profiling of immune response to disease using protein microarrays. OMICS 10(4):499–506. doi: 10.1089/omi.2006.10.499 CrossRefPubMedGoogle Scholar
  30. 30.
    Chatterjee M, Mohapatra S, Ionan A, Bawa G, Ali-Fehmi R, Wang X, Nowak J, Ye B, Nahhas FA, Lu K, Witkin SS, Fishman D, Munkarah A, Morris R, Levin NK, Shirley NN, Tromp G, Abrams J, Draghici S, Tainsky MA (2006) Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res 66(2):1181–1190. doi: 10.1158/0008-5472.CAN-04-2962 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, Mehra R, Montie JE, Pienta KJ, Sanda MG, Kantoff PW, Rubin MA, Wei JT, Ghosh D, Chinnaiyan AM (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353(12):1224–1235. doi: 10.1056/NEJMoa051931 CrossRefPubMedGoogle Scholar
  32. 32.
    Nagele E, Han M, Demarshall C, Belinka B, Nagele R (2011) Diagnosis of Alzheimer’s disease based on disease-specific autoantibody profiles in human sera. PLoS One 6(8):e23112. doi:10.1371/journal.pone.0023112.Google Scholar
  33. 33.
    Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG (2013) Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One 8(4):e60726. doi: 10.1371/journal.pone.0060726 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    DeMarshall C, Sarkar A, Nagele EP, Goldwaser E, Godsey G, Acharya NK, Nagele RG (2015) Utility of autoantibodies as biomarkers for diagnosis and staging of neurodegenerative diseases. Int Rev Neurobiol 122:1–51. doi: 10.1016/bs.irn.2015.05.005 CrossRefPubMedGoogle Scholar
  35. 35.
    Han M, Nagele E, DeMarshall C, Acharya N, Nagele R (2012) Diagnosis of Parkinson’s disease based on disease-specific autoantibody profiles in human sera. PLoS One 7(2):e32383. doi: 10.1371/journal.pone.0032383 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Morrissey ER, Diaz-Uriarte R (2009) Pomelo II: finding differentially expressed genes. Nucleic Acids Res 37(Web Server):W581–W586. doi: 10.1093/nar/gkp366 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda M, Garcia-Alonso L, Sanchis-Juan A, Perez-Gil D, Marin-Garcia P, Sanchez R, Cubuk C, Hidalgo MR, Amadoz A, Hernansaiz-Ballesteros RD, Aleman A, Tarraga J, Montaner D, Medina I, Dopazo J (2015) Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Res 43(W1):W117–W121. doi: 10.1093/nar/gkv384 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27(22):3209–3210. doi: 10.1093/bioinformatics/btr490 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sboner A, Karpikov A, Chen G, Smith M, Mattoon D, Freeman-Cook L, Schweitzer B, Gerstein MB (2009) Robust-linear-model normalization to reduce technical variability in functional protein microarrays. J Proteome Res 8(12):5451–5464. doi: 10.1021/pr900412k CrossRefPubMedGoogle Scholar
  40. 40.
    McIntosh M, Fitzgibbon M (2009) Biomarker validation by targeted mass spectrometry. Nat Biotechnol 27(7):622–623. doi: 10.1038/nbt0709-622 CrossRefPubMedGoogle Scholar
  41. 41.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi: 10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  42. 42.
    Pelaez-Garcia A, Barderas R, Batlle R, Vinas-Castells R, Bartolome RA, Torres S, Mendes M, Lopez-Lucendo M, Mazzolini R, Bonilla F, Garcia de Herreros A, Casal JI (2015) A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteomics 14(2):303–315. doi: 10.1074/mcp.M114.045328 CrossRefPubMedGoogle Scholar
  43. 43.
    Pelaez-Garcia A, Barderas R, Mendes M, Lopez-Lucendo M, Sanchez JC, Garcia de Herreros A, Casal JI (2015) Data from proteomic characterization of the role of Snail1 in murine mesenchymal stem cells and 3T3-L1 fibroblasts differentiation. Data Brief 4:606–613. doi: 10.1016/j.dib.2015.07.027 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Pablo San Segundo-Acosta
    • 1
  • María Garranzo-Asensio
    • 2
  • Ana Montero-Calle
    • 1
  • Carmen Oeo-Santos
    • 1
  • Mayte Villalba
    • 1
  • Ana Guzman-Aranguez
    • 2
  • Rodrigo Barderas
    • 1
    • 3
  1. 1.Biochemistry and Molecular Biology Department IComplutense University of MadridMadridSpain
  2. 2.Biochemistry and Molecular Biology Department IVComplutense University of MadridMadridSpain
  3. 3.Chronic Disease ProgrammeCarlos III Institute of HealthMajadahondaSpain

Personalised recommendations