Skip to main content

Application of Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to Monitor Olfactory Proteomes During Alzheimer’s Disease Progression

  • Protocol
  • First Online:
  • 717 Accesses

Part of the book series: Neuromethods ((NM,volume 127))

Abstract

Olfactory impairment is a common early feature in several neurodegenerative diseases, including Alzheimer’s disease (AD). One of the main brain regions involved in the processing of olfactory information is the olfactory bulb (OB). In this chapter, we describe the use of isobaric tags for relative and absolute quantification (iTRAQ) to study the OB proteome during the neurodegenerative process in AD subjects. These chemical tags label all peptides in a protein digest via free amines at the peptide N-terminus and on the side chain of lysine residues. Labeled samples are then pooled and analyzed simultaneously using mass spectrometry (MS). Since these tags are isobaric, the intensity of each peak is the sum of the intensity of the peptide from all samples, thus enhancing sensitivity in MS. Similarly, upon peptide fragmentation, amino acid sequence ions also show this summed intensity. However, the distinct distribution of isotopes in the tags is such that when the tags fragment, a tag-specific reporter ion is released. The relative amount of peptide in each of the labeled samples will be represented by the relative intensities of these ions. In summary, this chapter describes the experimental procedure followed to analyzed human OB samples from AD subjects with the aim to increase the understanding of the molecular mechanisms that underlie neurodegeneration in this brain region.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MM, Copeland JR, Dartigues JF, Jagger C, Martinez-Lage J, Soininen H, Hofman A (2000) Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54(11 Suppl 5):S4–S9

    CAS  PubMed  Google Scholar 

  2. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  3. Doty RL (2008) The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol 63(1):7–15. doi:10.1002/ana.21327

    Article  PubMed  Google Scholar 

  4. Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 127(4):459–475. doi:10.1007/s00401-014-1261-7

    Article  CAS  PubMed  Google Scholar 

  5. Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5(3):651–658. doi:10.1021/pr050405o

    Article  CAS  PubMed  Google Scholar 

  6. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi:10.1074/mcp.M400129-MCP200. M400129-MCP200 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61(3):186–218. doi:10.1016/j.ymeth.2013.04.008. S1046-2023(13)00112-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zelaya MV, Perez-Valderrama E, de Morentin XM, Tunon T, Ferrer I, Luquin MR, Fernandez-Irigoyen J, Santamaria E (2015) Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget 6(37):39437–39456. doi:10.18632/oncotarget.6254. 6254 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  10. Choe L, D'Ascenzo M, Relkin NR, Pappin D, Ross P, Williamson B, Guertin S, Pribil P, Lee KH (2007) 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7(20):3651–3660. doi:10.1002/pmic.200700316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  12. Latosinska A, Vougas K, Makridakis M, Klein J, Mullen W, Abbas M, Stravodimos K, Katafigiotis I, Merseburger AS, Zoidakis J, Mischak H, Vlahou A, Jankowski V (2015) Comparative analysis of label-free and 8-Plex iTRAQ approach for quantitative tissue proteomic analysis. PLoS One 10(9):e0137048. doi:10.1371/journal.pone.0137048. PONE-D-15-05425 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Alvarez S, Hicks LM (2012) Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res 11(1):487–501. doi:10.1021/pr2008225

    Article  CAS  PubMed  Google Scholar 

  14. Houel S, Abernathy R, Renganathan K, Meyer-Arendt K, Ahn NG, Old WM (2010) Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies. J Proteome Res 9(8):4152–4160. doi:10.1021/pr1003856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10(4):1785–1793. doi:10.1021/pr101060v

    Article  CAS  PubMed  Google Scholar 

  16. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355. doi:10.1021/pr900634c

    Article  CAS  PubMed  Google Scholar 

  17. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897. doi:10.1074/mcp.M900628-MCP200. M900628-MCP200 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ow SY, Salim M, Noirel J, Evans C, Wright PC (2011) Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics 11(11):2341–2346. doi:10.1002/pmic.201000752

    Article  CAS  PubMed  Google Scholar 

  19. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940. doi:10.1038/nmeth.1714. nmeth.1714 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8(11):933–935. doi:10.1038/nmeth.1716. nmeth.1716 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, Kuhn K, Pike I, Grothe RA, Blethrow JD, Gygi SP (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84(17):7469–7478. doi:10.1021/ac301572t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thingholm TE, Palmisano G, Kjeldsen F, Larsen MR (2010) Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9(8):4045–4052. doi:10.1021/pr100230q

    Article  CAS  PubMed  Google Scholar 

  23. Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 83(13):5442–5446. doi:10.1021/ac200812d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradshaw RA, Burlingame AL, Carr S, Aebersold R (2006) Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics 5(5):787–788. doi:10.1074/mcp.E600005-MCP200. 5/5/787 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Unwin RD, Griffiths JR, Whetton AD (2010) Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat Protoc 5(9):1574–1582. doi:10.1038/nprot.2010.123. nprot.2010.123 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Scheerlinck E, Dhaenens M, Van Soom A, Peelman L, De Sutter P, Van Steendam K, Deforce D (2015) Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry. Anal Biochem 490:14–19. doi:10.1016/j.ab.2015.08.018. S0003-2697(15)00394-2 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Spanish Ministry of Economy and Competitiveness (MINECO) (Ref. SAF2014-59340-R), Department of Economic Development from Government of Navarra (Ref. PC025), and Obra Social la Caixa to E.S. A.G.M. is supported by PEJ-2014-A-61949 (MINECO). The proteomics unit of Navarrabiomed is a member of Proteored, PRB2-ISCIII, and is supported by grant PT13/0001 of the PE I+D+I 2013–2016 funded by ISCIII and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Fernández-Irigoyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Morales, A.G., Lachén-Montes, M., Ibáñez-Vea, M., Santamaría, E., Fernández-Irigoyen, J. (2017). Application of Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to Monitor Olfactory Proteomes During Alzheimer’s Disease Progression. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Current Proteomic Approaches Applied to Brain Function. Neuromethods, vol 127. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7119-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7119-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7118-3

  • Online ISBN: 978-1-4939-7119-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics