Applications of Amine-Reactive Tandem Mass Tags (TMT) in Human Neuroproteomics

  • Linnéa Lagerstedt
  • Leire Azurmendi
  • Jean-Charles Sanchez
Protocol
Part of the Neuromethods book series (NM, volume 127)

Abstract

Neuroproteomics is a complex field of life sciences due to the high complexity of the brain. This area comprises different pathophysiological conditions such as normal neurodevelopment, neurovascular disorders, and neurodegenerative disorders. A massive amount of studies have been performed using proteomics to increase the knowledge in this topic. However, there are still a lot more to explore. The most common proteomic techniques for investigating the different stages and conditions in neurodevelopment and diseases have mainly been based on two-dimensional gel electrophoresis (2-DE). More recently, the use of amine-reactive tandem mass tags (TMT) has also contributed to increase the understanding of the brain and associated disorders. The TMT can simultaneously compare up to ten samples and is compatible with a variety of biological samples. The proteins are labeled, pooled and co-eluted, and analyzed by LC-MS/MS. The multiplexing allows different designs and comparisons between the samples. Therefore the method is highly recommendable for, e.g., biomarker discovery in the neuroproteomic field. In this chapter the TMT 10-plex method will be detailed for use with three different brain proximal samples: cerebrospinal fluid (CSF), brain tissue, and neurons.

Key words

Mass spectrometry Isobaric tagging TMT Quantitative proteomics Neurodegenerative disorders Biomarker 

References

  1. 1.
    Shevchenko G, Konzer A, Musunuri S, Bergquist J (2015) Neuroproteomics tools in clinical practice. Biochim Biophys Acta 1854(7):705–717. doi:10.1016/j.bbapap.2015.01.016 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang KKW, Montaner J (2014) Neuroproteomics 101. Transl Proteom 3:A1–A2. doi:10.1016/j.trprot.2014.09.001 CrossRefGoogle Scholar
  3. 3.
    Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61(3):186–218. doi:10.1016/j.ymeth.2013.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu T, Hu J, Li H (2009) iTRAQ-based shotgun neuroproteomics. Methods Mol Biol 566:201–216. doi:10.1007/978-1-59745-562-6_14 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rauniyar N, Yates JR 3rd (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13(12):5293–5309. doi:10.1021/pr500880b CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dayon L, Turck N, Scherl A, Hochstrasser DF, Burkhard PR, Sanchez JC (2010) From relative to absolute quantification of tryptic peptides with tandem mass tags: application to cerebrospinal fluid. Chimia 64(3):132–135CrossRefPubMedGoogle Scholar
  7. 7.
    Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904CrossRefPubMedGoogle Scholar
  8. 8.
    Chiva C, Sabido E (2014) HCD-only fragmentation method balances peptide identification and quantitation of TMT-labeled samples in hybrid linear ion trap/orbitrap mass spectrometers. J Proteome 96:263–270. doi:10.1016/j.jprot.2013.11.013 CrossRefGoogle Scholar
  9. 9.
    Dayon L, Pasquarello C, Hoogland C, Sanchez JC, Scherl A (2010) Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteome 73(4):769–777. doi:10.1016/j.jprot.2009.10.015 CrossRefGoogle Scholar
  10. 10.
    Ye H, Boyne MT 2nd, Buhse LF, Hill J (2013) Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ Orbitrap XL electron transfer dissociation hybrid mass spectrometer. Anal Chem 85(3):1531–1539. doi:10.1021/ac3026465 CrossRefPubMedGoogle Scholar
  11. 11.
    Viner RI, Zhang T, Second T, Zabrouskov V (2009) Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. J Proteome 72(5):874–885. doi:10.1016/j.jprot.2009.02.005 CrossRefGoogle Scholar
  12. 12.
    Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80(8):2921–2931. doi:10.1021/ac702422x CrossRefPubMedGoogle Scholar
  13. 13.
    Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031. doi:10.1016/s0140-6736(10)61349-9 CrossRefPubMedGoogle Scholar
  14. 14.
    Lv J, Ma S, Zhang X, Zheng L, Ma Y, Zhao X, Lai W, Shen H, Wang Q, Ji J (2014) Quantitative proteomics reveals that PEA15 regulates astroglial Aβ phagocytosis in an Alzheimer’s disease mouse model. J Proteome 110:45–58. doi:10.1016/j.jprot.2014.07.028 CrossRefGoogle Scholar
  15. 15.
    Liu Y, Qing H, Deng Y (2014) Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 15(5):7865–7882. doi:10.3390/ijms15057865 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Licker V, Turck N, Kovari E, Burkhardt K, Cote M, Surini-Demiri M, Lobrinus JA, Sanchez JC, Burkhard PR (2014) Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson’s disease pathogenesis. Proteomics 14(6):784–794. doi:10.1002/pmic.201300342 CrossRefPubMedGoogle Scholar
  17. 17.
    Dayon L, Turck N, García-Berrocoso T, Walter N, Burkhard PR, Vilalta A, Sahuquillo J, Montaner J, Sanchez J-C (2011) Brain extracellular fluid protein changes in acute stroke patients. J Proteome Res 10(3):1043–1051. doi:10.1021/pr101123t CrossRefPubMedGoogle Scholar
  18. 18.
    Laban KG, Rinkel GJE, Vergouwen MDI (2015) Nosocomial infections after aneurysmal subarachnoid hemorrhage: time course and causative pathogens. Int J Stroke 10(5):763–766. doi:10.1111/ijs.12494 CrossRefPubMedGoogle Scholar
  19. 19.
    Azurmendi L, Degos V, Tiberti N, Kapandji N, Sanchez P, Sarrafzadeh A, Puybasset L, Turck N, Sanchez J-C (2015) Measuring serum amyloid A for infection prediction in aneurysmal subarachnoid hemorrhage. J Proteome Res 14(9):3948–3956. doi:10.1021/acs.jproteome.5b00391 CrossRefPubMedGoogle Scholar
  20. 20.
    Nunez Galindo A, Kussmann M, Dayon L (2015) Proteomics of cerebrospinal fluid: throughput and robustness using a scalable automated analysis pipeline for biomarker discovery. Anal Chem 87(21):10755–10761. doi:10.1021/acs.analchem.5b02748 CrossRefPubMedGoogle Scholar
  21. 21.
    Yu LR, Conrads TP, Uo T, Kinoshita Y, Morrison RS, Lucas DA, Chan KC, Blonder J, Issaq HJ, Veenstra TD (2004) Global analysis of the cortical neuron proteome. Mol Cell Proteomics 3(9):896–907. doi:10.1074/mcp.M400034-MCP200 CrossRefPubMedGoogle Scholar
  22. 22.
    Giron P, Dayon L, Turck N, Hoogland C, Sanchez JC (2011) Quantitative analysis of human cerebrospinal fluid proteins using a combination of cysteine tagging and amine-reactive isobaric labeling. J Proteome Res 10(1):249–258. doi:10.1021/pr100535f CrossRefPubMedGoogle Scholar
  23. 23.
    Friedman DB (2007) Quantitative proteomics for two-dimensional gels using difference gel electrophoresis. Methods Mol Biol 367:219–239. doi:10.1385/1-59745-275-0:219 PubMedGoogle Scholar
  24. 24.
    Deutsch EW, Overall CM, Van Eyk JE, Baker MS, Paik YK, Weintraub ST, Lane L, Martens L, Vandenbrouck Y, Kusebauch U, Hancock WS, Hermjakob H, Aebersold R, Moritz RL, Omenn GS (2016) Human proteome project mass spectrometry data interpretation guidelines 2.1. J Proteome Res 15(11):3961–3970. doi:10.1021/acs.jproteome.6b00392 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Linnéa Lagerstedt
    • 1
  • Leire Azurmendi
    • 1
  • Jean-Charles Sanchez
    • 1
  1. 1.Translational Biomarker Group, Human Protein Sciences Department, Faculty of MedicineGeneva UniversityGeneva 4Switzerland

Personalised recommendations