Skip to main content

Quantitative In-Depth Profiling of the Postsynaptic Density Proteome to Understand the Molecular Mechanisms Governing Synaptic Physiology and Pathology

  • Protocol
  • First Online:
Current Proteomic Approaches Applied to Brain Function

Part of the book series: Neuromethods ((NM,volume 127))

Abstract

The postsynaptic density (PSD) is a very large protein complex found in excitatory synapses, the most abundant synaptic type in the brain. PSDs contain key proteins to postsynaptic functioning, being closely related to synaptic plasticity and underlying high cognitive abilities such as learning and memory. Biochemical isolation of PSDs has allowed for their profiling by mass spectrometry-based proteomics, revealing it as a highly complex structure containing over 2000 proteins. Genetic studies have found many genes expressed at the PSD as causing neurological as well as mental and behavioral disorders. Understanding the proteomic architecture and dynamics of the PSD is not only key to understand normal brain function but also highly incapacitating human conditions. Here we present easy and robust protocols to isolate PSDs from very little amounts of brain tissue and a mass spectrometry proteomics procedure that allows to identify and quantify over 2000 different PSD proteins in a routinely fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183(4675):1592–1593

    Article  CAS  PubMed  Google Scholar 

  2. Peters A, Palay SL (1996) The morphology of synapses. J Neurocytol 25(1):687–700

    Article  CAS  PubMed  Google Scholar 

  3. Beaulieu C, Colonnier M (1985) A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J Comp Neurol 231(2):180–189

    Article  CAS  PubMed  Google Scholar 

  4. DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: Comparative aspects. J Neurocytol 31(3–5):299–316

    Article  PubMed  Google Scholar 

  5. Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86(3):831–845

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Vinade L, Leapman RD, Petersen JD, Nakagawa T, Phillips TM et al (2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc Natl Acad Sci U S A 102(32):11551–11556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayés À, van de Lagemaat LN, Collins MO, Croning MDR, Whittle IR, Choudhary JS et al (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14(1):19–21

    Article  PubMed  Google Scholar 

  8. Bayés À, Collins MO, Galtrey CM, Simonnet C, Roy M, Croning MD et al (2014) Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes. Mol Brain 7:88

    Article  PubMed  PubMed Central  Google Scholar 

  9. Soto D, Altafaj X, Sindreu C, Bayés À (2014) Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 7(1):e27887

    Article  PubMed  PubMed Central  Google Scholar 

  10. Srivastava AK, Schwartz CE (2014) Intellectual disability and autism spectrum disorders: Causal genes and molecular mechanisms. Neurosci Biobehav Rev 46(Part 2):161–174

    Article  CAS  PubMed  Google Scholar 

  11. Volk L, Chiu S-L, Sharma K, Huganir RL (2015) Glutamate synapses in human cognitive disorders. Annu Rev Neurosci 38(1):127–149

    Article  CAS  PubMed  Google Scholar 

  12. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563

    Article  CAS  PubMed  Google Scholar 

  13. Sala C, Vicidomini C, Bigi I, Mossa A, Verpelli C (2015) Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem 135(5):849–858

    Article  CAS  PubMed  Google Scholar 

  14. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17(2):142–153

    Article  CAS  PubMed  Google Scholar 

  16. Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ (2014) Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology 79:172–179

    Article  CAS  PubMed  Google Scholar 

  17. Most D, Ferguson L, Blednov Y, Mayfield RD, Harris RA (2015) The synaptoneurosome transcriptome: a model for profiling the emolecular effects of alcohol. Pharmacogenomics J 15(2):177–188

    Article  CAS  PubMed  Google Scholar 

  18. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32(10):1053–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N, Satija R et al (2015) Dynamic profiling of the protein life cycle in response to pathogens. Science 347(6226):1259038

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18(12):1819–1831

    Article  CAS  PubMed  Google Scholar 

  21. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carlin RK, Grab DJ, Siekevitz P (1982) Postmortem accumulation of tubulin in postsynaptic density preparations. J Neurochem 38(1):94–100

    Article  CAS  PubMed  Google Scholar 

  23. Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex: I. overall morphology and protein composition. J Cell Biol 74(1):181–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grab DJ, Carlin RK, Siekevitz P (1980) The presence and functions of calmodulin in the postsynaptic density. Ann N Y Acad Sci 356(1):55–72

    Article  CAS  PubMed  Google Scholar 

  25. Bayés A, Grant SGN (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10(9):635–646

    Article  PubMed  Google Scholar 

  26. Collins MO, Husi H, Yu L, Brandon JM, Anderson CNG, Blackstock WP et al (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97:16–23

    Article  CAS  PubMed  Google Scholar 

  27. Dieterich DC, Kreutz MR (2016) Proteomics of the synapse – a quantitative approach to neuronal plasticity. Mol Cell Proteomics 15(2):368–381

    Article  CAS  PubMed  Google Scholar 

  28. O’Rourke NA, Weiler NC, Micheva KD, Smith SJ (2012) Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 13(6):365–379

    PubMed  PubMed Central  Google Scholar 

  29. Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B et al (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344(6187):1023–1028

    Article  CAS  PubMed  Google Scholar 

  30. Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R et al (2014) A draft map of the human proteome. Nature 509(7502):575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  CAS  PubMed  Google Scholar 

  34. Bayés À, Collins MO, Croning MDR, de LLN v, Choudhary JS, Grant SGN (2012) Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One 7(10):e46683

    Article  PubMed  PubMed Central  Google Scholar 

  35. Distler U, Schmeisser MJ, Pelosi A, Reim D, Kuharev J, Weiczner R et al (2014) In-depth protein profiling of the postsynaptic density from mouse hippocampus using data-independent acquisition proteomics. Proteomics 14(21–22):2607–2613

    Article  CAS  PubMed  Google Scholar 

  36. Trinidad JC, Thalhammer A, Specht CG, Lynn AJ, Baker PR, Schoepfer R et al (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7(4):684–696

    Article  CAS  PubMed  Google Scholar 

  37. Morón JA, Abul-Husn NS, Rozenfeld R, Dolios G, Wang R, Devi LA (2007) Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins. A proteomics study focusing on endocytic proteins. Mol Cell Proteomics 6(1):29–42

    Article  PubMed  Google Scholar 

  38. Zhou J, Jones DR, Duong DM, Levey AI, Lah JJ, Peng J (2013) Proteomic analysis of postsynaptic density in Alzheimer’s disease. Clin Chim Acta 420:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  40. Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W et al (2001) The presynaptic particle Web. Neuron 32(1):63–77

    Article  CAS  PubMed  Google Scholar 

  41. Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ (2006) Absolute Quantification of Proteins by LCMSE A Virtue of Parallel ms Acquisition. Mol Cell Proteomics 5(1):144–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Spanish grants BFU2012-34398 and BFU2015-69717-P, as well as AB personal fellowship Career Integration Grant, ref. 304111 (Marie-Curie Action) and Ramón y Cajal Fellowship (RYC-2011-08391). We thank Dr. Francesc Canals (Vall d’Hebron Institute of Oncology, Barcelona Spain) for critical review of mass spectrometry methods; Luna Martin (Vall d’Hebron Institute of Oncology, Barcelona Spain) for support on proteomic methods and analysis; Gemma Gou, Marcos Arranz, and Eva Olmedo (IIB Sant Pau, Barcelona Spain) for collaboration in experiments performance; and Ignasi Gich (IIB Sant Pau, Barcelona Spain) for support on biostatistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Àlex Bayés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Reig-Viader, R., Bayés, À. (2017). Quantitative In-Depth Profiling of the Postsynaptic Density Proteome to Understand the Molecular Mechanisms Governing Synaptic Physiology and Pathology. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Current Proteomic Approaches Applied to Brain Function. Neuromethods, vol 127. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7119-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7119-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7118-3

  • Online ISBN: 978-1-4939-7119-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics