Brain Proteomics: Decoding Neuroproteomes Using Mass Spectrometry

  • Joaquín Fernández-Irigoyen
  • Enrique Santamaría
Protocol
Part of the Neuromethods book series (NM, volume 127)

Abstract

During the last decade, the brain proteomics community has used anatomical, protein, and peptide fractionation strategies coupled to nanoLC-MS/MS in order to perform shotgun proteome-wide analysis of cerebrospinal fluid (CSF), and human brain areas. All these studies are necessary to understand the molecular basis of specific brain structures that are affected during the progression of neurodegenerative and psychiatric disorders. In general, all these efforts have generated an extensive overview of molecular functions, pathways, and protein interaction data, taking the first steps toward the generation of a reference proteome map of the human brain.

Key words

Brain Proteomics Mass spectrometry 

References

  1. 1.
    Kitchen RR, Rozowsky JS, Gerstein MB, Nairn AC (2014) Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 17(11):1491–1499. doi:10.1038/nn.3829. nn.3829 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley RA, Daly BD, Dang C, Datta S, Dee N, Dolbeare TA, Faber V, Feng D, Fowler DR, Goldy J, Gregor BW, Haradon Z, Haynor DR, Hohmann JG, Horvath S, Howard RE, Jeromin A, Jochim JM, Kinnunen M, Lau C, Lazarz ET, Lee C, Lemon TA, Li L, Li Y, Morris JA, Overly CC, Parker PD, Parry SE, Reding M, Royall JJ, Schulkin J, Sequeira PA, Slaughterbeck CR, Smith SC, Sodt AJ, Sunkin SM, Swanson BE, Vawter MP, Williams D, Wohnoutka P, Zielke HR, Geschwind DH, Hof PR, Smith SM, Koch C, Grant SG, Jones AR (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489(7416):391–399. doi:10.1038/nature11405. nature11405 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10(9):635–646. doi:10.1038/nrn2701. nrn2701 [pii]CrossRefPubMedGoogle Scholar
  4. 4.
    Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489. doi:10.1038/nature10523. nature10523 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Ebbert A, Riley ZL, Royall JJ, Aiona K, Arnold JM, Bennet C, Bertagnolli D, Brouner K, Butler S, Caldejon S, Carey A, Cuhaciyan C, Dalley RA, Dee N, Dolbeare TA, Facer BA, Feng D, Fliss TP, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Howard RE, Jochim JM, Kuan CL, Lau C, Lee CK, Lee F, Lemon TA, Lesnar P, McMurray B, Mastan N, Mosqueda N, Naluai-Cecchini T, Ngo NK, Nyhus J, Oldre A, Olson E, Parente J, Parker PD, Parry SE, Stevens A, Pletikos M, Reding M, Roll K, Sandman D, Sarreal M, Shapouri S, Shapovalova NV, Shen EH, Sjoquist N, Slaughterbeck CR, Smith M, Sodt AJ, Williams D, Zollei L, Fischl B, Gerstein MB, Geschwind DH, Glass IA, Hawrylycz MJ, Hevner RF, Huang H, Jones AR, Knowles JA, Levitt P, Phillips JW, Sestan N, Wohnoutka P, Dang C, Bernard A, Hohmann JG, Lein ES (2014) Transcriptional landscape of the prenatal human brain. Nature 508(7495):199–206. doi:10.1038/nature13185. nature13185 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. doi:10.1038/nature05453. nature05453 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Morris JA, Royall JJ, Bertagnolli D, Boe AF, Burnell JJ, Byrnes EJ, Copeland C, Desta T, Fischer SR, Goldy J, Glattfelder KJ, Kidney JM, Lemon T, Orta GJ, Parry SE, Pathak SD, Pearson OC, Reding M, Shapouri S, Smith KA, Soden C, Solan BM, Weller J, Takahashi JS, Overly CC, Lein ES, Hawrylycz MJ, Hohmann JG, Jones AR (2010) Divergent and nonuniform gene expression patterns in mouse brain. Proc Natl Acad Sci U S A 107(44):19049–19054. doi:10.1073/pnas.1003732107. 1003732107 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bakken TE, Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Dalley RA, Royall JJ, Lemon T, Shapouri S, Aiona K, Arnold J, Bennett JL, Bertagnolli D, Bickley K, Boe A, Brouner K, Butler S, Byrnes E, Caldejon S, Carey A, Cate S, Chapin M, Chen J, Dee N, Desta T, Dolbeare TA, Dotson N, Ebbert A, Fulfs E, Gee G, Gilbert TL, Goldy J, Gourley L, Gregor B, Gu G, Hall J, Haradon Z, Haynor DR, Hejazinia N, Hoerder-Suabedissen A, Howard R, Jochim J, Kinnunen M, Kriedberg A, Kuan CL, Lau C, Lee CK, Lee F, Luong L, Mastan N, May R, Melchor J, Mosqueda N, Mott E, Ngo K, Nyhus J, Oldre A, Olson E, Parente J, Parker PD, Parry S, Pendergraft J, Potekhina L, Reding M, Riley ZL, Roberts T, Rogers B, Roll K, Rosen D, Sandman D, Sarreal M, Shapovalova N, Shi S, Sjoquist N, Sodt AJ, Townsend R, Velasquez L, Wagley U, Wakeman WB, White C, Bennett C, Wu J, Young R, Youngstrom BL, Wohnoutka P, Gibbs RA, Rogers J, Hohmann JG, Hawrylycz MJ, Hevner RF, Molnar Z, Phillips JW, Dang C, Jones AR, Amaral DG, Bernard A, Lein ES (2016) A comprehensive transcriptional map of primate brain development. Nature. doi:10.1038/nature18637. nature18637 [pii]PubMedCentralGoogle Scholar
  9. 9.
    Hamacher M, Meyer HE (2005) HUPO Brain Proteome Project: aims and needs in proteomics. Expert Rev Proteomics 2(1):1–3. doi:10.1586/14789450.2.1.1 CrossRefPubMedGoogle Scholar
  10. 10.
    Fernandez-Irigoyen J, Labarga A, Zabaleta A, de Morentin XM, Perez-Valderrama E, Zelaya MV, Santamaria E (2015) Toward defining the anatomo-proteomic puzzle of the human brain: an integrative analysis. Proteomics Clin Appl 9(9–10):796–807. doi:10.1002/prca.201400127 CrossRefPubMedGoogle Scholar
  11. 11.
    Fernandez-Irigoyen J, Zelaya MV, Perez-Valderrama E, Santamaria E (2015) New insights into the human brain proteome: protein expression profiling of deep brain stimulation target areas. J Proteomics 127(Pt B):395–405. doi:10.1016/j.Jprot.2015.03.032. S1874-3919(15)00143-8 [pii]CrossRefPubMedGoogle Scholar
  12. 12.
    Fernandez-Irigoyen J, Zelaya MV, Tunon T, Santamaria E (2014) Anatomo-proteomic characterization of human basal ganglia: focus on striatum and globus pallidus. Mol Brain 7:83. doi:10.1186/s13041-014-0083-9. s13041-014-0083-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18(12):1819–1831. doi:10.1038/nn.4160. nn.4160 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Fountoulakis M (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrom Rev 23(4):231–258. doi:10.1002/mas.10075 CrossRefPubMedGoogle Scholar
  15. 15.
    Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML (2014) Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 23(22):5866–5878. doi:10.1093/hmg/ddu309. ddu309 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. doi:10.1038/nature13319. nature13319 [pii]CrossRefPubMedGoogle Scholar
  17. 17.
    Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61(3):186–218. doi:10.1016/j.ymeth.2013.04.008. S1046-2023(13)00112-6 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Twiss JL, Fainzilber M (2016) Neuroproteomics: how many angels can be identified in an extract from the head of a pin? Mol Cell Proteomics 15(2):341–343. doi:10.1074/mcp.E116.057828. E116.057828 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tribl F, Meyer HE, Marcus K (2008) Analysis of organelles within the nervous system: impact on brain and organelle functions. Expert Rev Proteomics 5(2):333–351. doi:10.1586/14789450.5.2.333 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Joaquín Fernández-Irigoyen
    • 1
  • Enrique Santamaría
    • 1
  1. 1.Clinical Neuroproteomics Unit, Navarrabiomed, Navarra Health DepartmentPublic University of Navarra, Proteored-Institute of Health Carlos III (ISCIII), Navarra Institute for Health Research (IdiSNA)PamplonaSpain

Personalised recommendations