Abstract
The development of the CRISPR/Cas9 technology has provided powerful methods to target genetic alterations. However, investigating the function of genes essential for cell survival remains problematic, because genetic ablation of these genes results in cell death. As a consequence, cells recombined at the targeted gene and fully depleted of the gene product cannot be obtained. RNA interference is well suited for the study of essential genes, but this approach often results in a partial depletion of the targeted gene product, which can lead to misinterpretations. We previously developed the pHYPER shRNA vector, a high efficiency RNA interference vector, which is based on a 2.5-kb mouse genomic fragment encompassing the H1 gene. We provide here a pHYPER-based protocol optimized to study the function of essential gene products in mouse embryonic stem cells.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958
Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553
Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508
Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520
Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500
Lee NS, Dohjima T, Bauer G et al (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505
Houlard M, Berlivet S, Probst AV et al (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2:e181
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Berlivet, S., Hmitou, I., Picaud, H., Gérard, M. (2017). Efficient Depletion of Essential Gene Products for Loss-of-Function Studies in Embryonic Stem Cells. In: Zhang, B. (eds) RNAi and Small Regulatory RNAs in Stem Cells. Methods in Molecular Biology, vol 1622. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7108-4_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7108-4_7
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7106-0
Online ISBN: 978-1-4939-7108-4
eBook Packages: Springer Protocols