Skip to main content

Nanoparticle-Based Mycosis Vaccine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1625))

Abstract

Many diseases that were considered major affliction of mankind in the past have been successfully eradicated with introduction of appropriate vaccine strategies. In order to expedite new challenges coming up to deal with various infectious diseases, nano-particulate-based subunit vaccines seem to be the demand of ordeal. The nano-vaccines can find better scope for the diseases that were not rampant in the semi-advanced world few years back. For example in present-day circumstances that corroborate with advancement in the field of medical sciences in terms of cancer chemotherapy, organ transplantation, therapy of autoimmune diseases, etc.; along with prevalence of altogether unheard diseases such as HIV infection, people are at risk of infliction with many more pathogens. In this regard, development of an effective prophylactic strategy against many opportunistic infections primarily caused by fungal pathogens needs better understanding of host pathogen relation and role of active immunity against pathogenic fungi. In the present study, we have tried to decipher effectiveness of a nano-sized vaccine delivery system in imparting protection against fungal pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Church D, Elsayed S, Reid O et al (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vivier E, Ugolini S (2011) Natural killer cells: from basic research to treatments. Front Immunol. doi:10.3389/fimmu.2011.00018

    PubMed  PubMed Central  Google Scholar 

  3. Buchacz K, Baker K, Palella J Jr et al (2007) AIDS-defining opportunistic illnesses in US patients, 1994-2007: a cohort study. AIDS 24:1549–1559

    Article  Google Scholar 

  4. Leena VG, Ravi D, Abhay S (2005) Review of Health care in India. CEHAT, Mumbai. ISBN: 81-89042-40-8

    Google Scholar 

  5. Moghimi M, Hunter C, Murray C (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  CAS  PubMed  Google Scholar 

  6. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  CAS  PubMed  Google Scholar 

  7. Bangham AD, Standish MM, Miller N (1965) Cation permeability of phospholipid model membranes: effect of narcotics. Nature 208:1295–1297

    Article  CAS  PubMed  Google Scholar 

  8. Liechty B, Kryscio R, Slaughter V, Peppas A (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moghimi M, Hunter C (2001) Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carrier Syst 18:527–550

    Article  CAS  PubMed  Google Scholar 

  10. Panyam J, Lof J, O'Leary E, Labhasetwar V (2002) Efficiency of dispatch and infiltrator cardiac infusion catheters in arterial localization of nanoparticles in a porcine coronary model of restenosis. J Drug Target 10:515–523

    Article  CAS  PubMed  Google Scholar 

  11. Quintana A, Raczka E, Piehler L et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    Article  CAS  PubMed  Google Scholar 

  12. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  PubMed  Google Scholar 

  14. Sudimack J, Lee J (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–146

    Article  CAS  PubMed  Google Scholar 

  15. Sinico C, Fadda M (2009) Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv 6:813–825

    Article  CAS  PubMed  Google Scholar 

  16. Biju S, Sushama T, Mishra R et al (2006) Vesicular systems: an overview. Indian J Pharma Sci 68:141–153

    Article  CAS  Google Scholar 

  17. Vollmar B, Menger D (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339

    Article  CAS  PubMed  Google Scholar 

  18. Singh S (2011) Membrane permeability in biological systems: a systems biology perspective. J Comput Sci Syst Biol 4:27–32

    Article  Google Scholar 

  19. Copland J, Rades T, Davies M et al (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97–105

    Article  CAS  PubMed  Google Scholar 

  20. Semple C, Harasym O, Clow A et al (2005) Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid. J Pharmacol Exp Ther 312:1020–1026

    Article  CAS  PubMed  Google Scholar 

  21. Syed M, Khan A, Nasti H et al (2003) Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response. Vaccine 21:2383–2393

    Article  CAS  PubMed  Google Scholar 

  22. Ahmed A, Dare V, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215

    Article  CAS  PubMed  Google Scholar 

  23. Mosesson W (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    Article  CAS  PubMed  Google Scholar 

  24. Mosesson W, Siebenlist R, Meh A (2001) The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 936:11–30

    Article  CAS  PubMed  Google Scholar 

  25. Horan T, Francis W (2001) Fibrin degradation products, fibrin monomer and soluble fibrin in disseminated intravascular coagulation. Semin Thromb Hemost 27:657–666

    Article  CAS  PubMed  Google Scholar 

  26. Doolittle F, Chen R, Lau F (1971) Hybrid fibrin: proof of the intermolecular nature of- crosslinking units. Biochem Biophys Res Commun 44:94–100

    Article  CAS  PubMed  Google Scholar 

  27. Schense C, Hubbell A (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10:75–81

    Article  CAS  PubMed  Google Scholar 

  28. Gorodetsky R, Clark RA, An J et al (1999) Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing. J Invest Dermatol 112:866–872

    Article  CAS  PubMed  Google Scholar 

  29. Marx G, Mou X, Hotovely-Salomon A et al (2008) Heat denaturation of fibrinogen to develop a biomedical matrix. J Biomed Mater Res B Appl Biomater 84(1):49–57

    Article  PubMed  CAS  Google Scholar 

  30. Shimony N, Gorodetsky R, Marx G et al (2006) Fibrin microbeads (FMB) as a 3D platform for kidney gene and cell therapy. Kidney Int 69:625–633

    Article  CAS  PubMed  Google Scholar 

  31. Gurevich O, Vexler A, Marx G et al (2002) Fibrin microbeads for isolating and growing bone marrow-derived progenitor cells capable of forming bone tissue. Tissue Eng 8:661–672

    Article  CAS  PubMed  Google Scholar 

  32. Redl H, Schlag G, Stanek G, Hirschl A et al (1983) In vitro properties of mixtures of fibrin seal and antibiotics. Biomaterials 4:29–32

    Article  CAS  PubMed  Google Scholar 

  33. Tsourvakas S, Hatzigrigoris P, Tsibinos A et al (1995) Pharmacokinetic study of fibrin clot ciprofloxacin complex: an in vitro and in vivo experimental investigation. Arch Orthop Trauma Surg 114:295–297

    Article  CAS  PubMed  Google Scholar 

  34. Senderoff I, Sheu T, Sokoloski D (1991) Fibrin based drug delivery systems. J Parenter Sci Technol 45:2–6

    CAS  PubMed  Google Scholar 

  35. Yoshida H, Yamaoka Y, Shinoyama M et al (2000) Novel drug delivery system using autologous fibrin glue--release properties of anti-cancer drugs. Biol Pharm Bull 23:371–374

    Article  CAS  PubMed  Google Scholar 

  36. Woolverton J, Fulton A, Salstrom J et al (2001) Tetracycline delivery from fibrin controls peritoneal infection without measurable systemic antibiotic. J Antimicrob Chemother 48:861–867

    Article  CAS  PubMed  Google Scholar 

  37. Kumar R, Vasantha Bai M, Krishnan K (2004) A freeze-dried fibrin disc as a biodegradable drug release matrix. Biologicals 32:49–55

    Article  CAS  PubMed  Google Scholar 

  38. Itokazu M, Yamamoto K, Yang Y et al (1997) The sustained release of antibiotic from freeze-dried fibrin-antibiotic compound and efficacies in a rat model of osteomyelitis. Infection 25:359–363

    Article  CAS  PubMed  Google Scholar 

  39. Simpson E, Gilbert A, Rudnick E et al (2002) Transscleral diffusion of carboplatin: an in vitro and in vivo study. Arch Ophthalmol 120:1069–1074

    Article  CAS  PubMed  Google Scholar 

  40. Pardue T, Hejny C, Gilbert A et al (2004) Retinal function after subconjunctival injection of carboplatin in fibrin sealant. Retina 24:776–782

    Article  PubMed  Google Scholar 

  41. Häfeli O, Pauer J, Unnithan J et al (2007) Fibrin glue system for adjuvant brachytherapy of brain tumors with 188Re and 186Re-labeled microspheres. Eur J Pharm Biopharm 65:282–288

    Article  PubMed  CAS  Google Scholar 

  42. Hou T, Xu J, Li Q et al (2008) In vitro evaluation of a fibrin gel antibiotic delivery system containing mesenchymal stem cells and vancomycin alginate beads for treating bone infections and facilitating bone formation. Tissue Eng Part A 14:1173–1182

    Article  CAS  PubMed  Google Scholar 

  43. Janmey A, McCormick E, Rammensee S et al (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6:48–51

    Article  CAS  PubMed  Google Scholar 

  44. Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  45. Atala A, Kim W, Paige T et al (1994) Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 152:641–643

    CAS  PubMed  Google Scholar 

  46. Wee S, Gombotz R (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  CAS  PubMed  Google Scholar 

  47. Silva A (2006) Nanomedicine: seeing the benefits of ceria. Nat Nanotechnol 1:92–94

    Article  CAS  PubMed  Google Scholar 

  48. Kolambkar M, Peister A, Ekaputra K et al (2010) Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng Part A 16:3219–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen M, Wu F, Wang T et al (2005) Preparation of recombinant human bone morphogenetic protein-2 loaded dextran-based microspheres and their characteristics. Acta Pharmacol Sin 26:1093–1103

    Article  CAS  PubMed  Google Scholar 

  50. Bachelder M, Beaudette T, Broaders E et al (2010) In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol Pharm 7:826–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qi J, Yao P, He F et al (2010) Nanoparticles with dextran/chitosan shell and BSA/chitosan core--doxorubicin loading and delivery. Int J Pharm 393:176–184

    Article  CAS  PubMed  Google Scholar 

  52. Müller E (2003) The origin of metazoan complexity: porifera as integrated animals. Integr Comp Biol 43:3–10

    Article  PubMed  Google Scholar 

  53. Di Lullo A, Sweeney M, Korkko J et al (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231

    Article  PubMed  CAS  Google Scholar 

  54. Wallace D, McPherson J, Ellingsworth L et al (1988) Injectable collagen for tissue augmentation. Collagen, Biotechnology 3:118–144

    Google Scholar 

  55. Wallace D, Rhee W, Reihanian H et al (1989) Injectable cross-linked collagen with improved flow properties. J Biomed Mater Res 23:931–945

    Article  CAS  PubMed  Google Scholar 

  56. Rosenblatt J, Devereux B, Wallace D (1993) Dynamic rheological studies of hydrophobic interactions in injectable collagen biomaterials. J Appl Polym Sci 50:953–963

    Article  CAS  Google Scholar 

  57. Chow A, Fuller G, Wallace D et al (1985) Rheo-optical response of rod-like chains subject to transient shear flow:2. Two-color birefringence measurements on collagen protein. Macromolecule 18:793–804

    Article  CAS  Google Scholar 

  58. Kligman M (1988) Histologic responses to collagen implants in human volunteers: comparison of Zyderm collagen with Zyplast implant. J Dermatol Surg Oncol 14:35–38

    Article  Google Scholar 

  59. Stegman J, Chu S, Bensch K et al (1987) A light and electron microscopic evaluation of Zyderm collagen and Zyplast implants in aging human facial skin. A pilot study. Arch Dermatol 123:1644–1169

    Article  CAS  PubMed  Google Scholar 

  60. Wallace G, Rosenblatt J (2003) Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev 55:1631–1649

    Article  CAS  PubMed  Google Scholar 

  61. Koch-Weser J, Sellers M (1976) Drug therapy. Binding of drugs to serum albumin (second of two parts). N Engl J Med 294:526–531

    Article  CAS  PubMed  Google Scholar 

  62. Kragh-Hansen U, Minchiotti L, Brennan O et al (1990) Hormone binding to natural mutants of human serum albumin. Eur J Biochem 193:169–174

    Article  CAS  PubMed  Google Scholar 

  63. Prinsen H, de Sain-van der Velden G (2004) Albumin turnover: experimental approach and its application in health and renal diseases. Clin Chim Acta 347:1–14

    Article  CAS  PubMed  Google Scholar 

  64. Nair S, Laurencin T (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90

    CAS  PubMed  Google Scholar 

  65. Eldridge H, Staas K, Meulbroek A et al (1991) Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 59:2978–2986

    CAS  PubMed  PubMed Central  Google Scholar 

  66. O'Hagan T, McGee P, Holmgren J et al (1993) Biodegradable microparticles for oral immunization. Vaccine 11:149–154

    Article  PubMed  Google Scholar 

  67. Pistner H, Gutwald R, Ordung R et al (1993) Poly(L-lactide): a long-term degradation study in vivo. I Biological results. Biomaterials 14:671–677

    Article  CAS  PubMed  Google Scholar 

  68. Marten L (2002) Encyclopedia of polymer science and technology. John Wiley & Sons, Inc., New York. doi:10.1002/0471440264.pst384

    Google Scholar 

  69. Lee Y, Soon Y (2007) Polymeric protein delivery systems. Prog Polym Sci 32:669–697

    Article  CAS  Google Scholar 

  70. Mandal K, Bostanian A, Graves A et al (2002) Poly(D,L-lactide-co-glycolide) encapsulated poly(vinyl alcohol) hydrogel as a drug delivery system. Pharm Res 19:1713–1719

    Article  CAS  PubMed  Google Scholar 

  71. Yeo Y, Namjin B, Kinam P (2001) Microencapsulation methods for delivery of protein drugs. Biotechnol Bioprocess Eng 6:213–230

    Article  CAS  Google Scholar 

  72. Middleton C, Tipton J (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  PubMed  Google Scholar 

  73. Makadia K, Siegel J (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3:1377–1397

    Article  CAS  Google Scholar 

  74. Visscher E, Robison A, Argentieri J (1987) Tissue response to biodegradable injectable microcapsules. J Biomater Appl 2:118–131

    Article  CAS  PubMed  Google Scholar 

  75. Cleland L, Powell F, Shire J (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10:307–377

    CAS  PubMed  Google Scholar 

  76. Denning W, Bromley J (2015) Infectious disease. How to bolster the antifungal pipeline. Science 347:1414–1416

    Article  CAS  PubMed  Google Scholar 

  77. Veerareddy R, Vobalaboina V (2004) Lipid-based formulations of amphotericin B. Drugs Today (Barc) 40:133–145

    Article  CAS  Google Scholar 

  78. Agrawal K, Gupta M (2000) Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev 41:135–146

    Article  CAS  PubMed  Google Scholar 

  79. Shadkchan Y, Keisari Y, Segal E (2004) Cytokines in mice treated with amphotericin B-intralipid. Med Mycol 42:123–128

    Article  CAS  PubMed  Google Scholar 

  80. Owais M, Ahmed I, Krishnakumar B et al (1993) Tuftsin-bearing liposomes as drug vehicles in the treatment of experimental aspergillosis. FEBS Lett 326:56–58

    Article  CAS  PubMed  Google Scholar 

  81. Masood K, Feroz M, Rukhsana J et al (2004) Prophylactic role of liposomised chloroquine against murine cryptococcosis less susceptible to fluconazole. Pharm Res 21:2207–2212

    Article  Google Scholar 

  82. Arellano M, Lonial S (2008) Clinical uses of GM-CSF, a critical appraisal and update. Biologics 2:13–27

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Blanco L, Garcia E (2008) Immune response to fungal infections. Vet Immunol Immunopathol 125:47–70

    Article  CAS  PubMed  Google Scholar 

  84. Polonelli L, Casadevall A, Han Y et al (2000) The efficacy of acquired humoral and cellular immunity in the prevention and therapy of experimental fungal infections. Med Mycol 38:281–292

    Article  PubMed  Google Scholar 

  85. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11:275–288

    Article  CAS  PubMed  Google Scholar 

  86. Wüthrich M, Deepe S Jr, Klein B (2012) Adaptive immunity to fungi. Annu Rev Immunol 30:115–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. van de Veerdonk L, Netea G (2010) T-cell subsets and antifungal host defenses. Curr Fungal Infect Rep 4:238–243

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gibson F, Johnston A (2015) Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genet Biol 78:76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spellberg B (2011) Vaccines for invasive fungal infections. F1000 Med Rep 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  90. Paramythiotou E, Frantzeskaki F, Flevari A et al (2014) Invasive fungal infections in the ICU: how to approach, how to treat. Molecules 19:1085–1119

    Article  CAS  PubMed  Google Scholar 

  91. Medici P, Del Poeta M (2015) New insights on the development of fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz 110:966–973

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anaissie E (1992) Opportunistic mycoses in the immunocompromised host: experience at a cancer center and review. Clin Infect Dis 14:S43–S53

    Article  PubMed  Google Scholar 

  93. Pfaller M, Wenzel R (1992) Impact of the changing epidemiology of fungal infections in the 1990s. Eur J Clin Microbiol Infect Dis 11:287–1291

    Article  CAS  PubMed  Google Scholar 

  94. Richardson D (1991) Opportunistic and pathogenic fungi. J Antimicrob Chemother 28:1–11

    Article  PubMed  Google Scholar 

  95. Walsh J (1992) Emerging targets in antibacterial and antifungal. Chapman & Hall, New York, pp 249–373

    Google Scholar 

  96. Banerjee N, Emori G, Culver H et al (1991) Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. National Nosocomial Infections Surveillance System. Am J Med 91:86S–89S

    Article  CAS  PubMed  Google Scholar 

  97. Emori G, Gaynes P (1993) An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev 6:428–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goff A, Koletar L, Buesching J et al (1995) Isolation of flucanozole-resistant Candida albicans from HIV negativepatients never treated with azoles. Clin Infect Dis 20:77–83

    Article  CAS  PubMed  Google Scholar 

  99. Nolte S, Parkinson T, Falconer J (1997) Isolation and charecterisation of flucanazole and amphoterecin B resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother 41:196–199

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nguyen H, Peacock E Jr, Morris J et al (1996) The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med 100:617–623

    Article  CAS  PubMed  Google Scholar 

  101. Iannitti G, Carvalho A, Romani L (2012) From memory to antifungal vaccine design. Trends Immunol 33:467–474

    Article  CAS  PubMed  Google Scholar 

  102. Behnsen J, Hartmann A, Schmaler J et al (2008) The opportunistic human pathogenic fungus Aspergillus fumigatus evades the host complement system. Infect Immun 76:820–827

    Article  CAS  PubMed  Google Scholar 

  103. Nanjappa G, Klein S (2014) Vaccine immunity against fungal infections. Curr Opin Immunol 28:27–33

    Article  CAS  PubMed  Google Scholar 

  104. Del Poeta M, Casadevall A (2012) Ten challenges on Cryptococcus and cryptococcosis. Mycopathologia 173:303–310

    Article  PubMed  CAS  Google Scholar 

  105. Shapiro S, Robbins N, Cowen E (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kirkpatrick H (1989) Chronic mucocutaneous candidiasis. Eur J Clin Microbiol Infect Dis 8:448–456

    Article  CAS  PubMed  Google Scholar 

  107. Bodey GP (1993) Hematogenous and major organ candidiasis. In: Bodey GP (ed) Candidiasis: pathogenesis, diagnosis and treatment. Raven, New York, pp 279–329

    Google Scholar 

  108. Casanova M, Martínez P, Chaffin L (1990) Fab fragments from a monoclonal antibody against a germ tube mannoprotein block the yeast-to-mycelium transition in Candida albicans. Infect Immun 58:3810–38112

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Buckley H, Lucas J, Hattler G Jr et al (1968) Defective cellular immunity associated with chronic mucocutaneous moniliasis and recurrent staphylococcal botryomycosis: immunological reconstitution by allogeneic bone marrow. Clin Exp Immunol 3:153–169

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hoh C, Lin P, Chan L et al (1996) Successful allogeneic bone marrow transplantation in severe chronic mucocutaneous candidiasis syndrome. Bone Marrow Transplant 18:797–800

    CAS  PubMed  Google Scholar 

  111. Cutler E (1976) Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. J Reticuloendothel Soc 19:121–124

    CAS  PubMed  Google Scholar 

  112. Jones-Carson J, Vazquez-Torres A, Warner T et al (2000) Disparate requirement for T cells in resistance to mucosal and acute systemic candidiasis. Infect Immun 68:2363–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tabeta H, Mikami Y, Abe F et al (1984) Studies on defense mechanisms against Candida albicans infection in congenitally athymic nude (nu/nu) mice. Mycopathologia 84:107–113

    Article  CAS  PubMed  Google Scholar 

  114. Romani L, Cenci E, Menacci A et al (1995) T helper cell dichotomy to Candida albicans: implications for pathology, therapy, and vaccine design. Immunol Res 14:148–162

    Article  CAS  PubMed  Google Scholar 

  115. Bistoni F, Cenci E, Mencacci A et al (1993) Mucosal and systemic T helper cell function after intragastric colonization of adult mice with Candida albicans. J Infect Dis 168:1449–1157

    Article  CAS  PubMed  Google Scholar 

  116. Ashman B, Fulurija A, Papadimitriou M (1999) Both CD4+ and CD8+ lymphocytes reduce the severity of tissue lesions in murine systemic cadidiasis, and CD4+ cells also demonstrate strain-specific immunopathological effects. Microbiology 145:1631–1640

    Article  CAS  PubMed  Google Scholar 

  117. Bodey P (1986) Infection in cancer patients. A continuing association. Am J Med 81:11–26

    Article  CAS  PubMed  Google Scholar 

  118. Nasser M, Melgar R, Longworth L et al (1997) Incidence and risk of developing fungal prosthetic valve endocarditis after nosocomial candidemia. Am J Med 103:25–32

    Article  CAS  PubMed  Google Scholar 

  119. Bross J, Talbot GH, Maislin G et al (1989) Risk factors for nosocomial candidemia: a case-control study in adults without leukemia. Am J Med 87:614–620

    Article  CAS  PubMed  Google Scholar 

  120. Wey B, Mori M, Pfaller A et al (1989) Risk factors for hospital-acquired candidemia. A matched case-control study. Arch Intern Med 149:2349–2353

    Article  CAS  PubMed  Google Scholar 

  121. MacDonald L, Baker C, Chenoweth C (1998) Risk factors for candidemia in a children's hospital. Clin Infect Dis 26:642–645

    Article  CAS  PubMed  Google Scholar 

  122. Lopez-Berestein G, Bodey GP, Fainstein V et al (1989) Treatment of systemic fungal infections with liposomal amphotericin B. Arch Intern Med 149:2533–2536

    Article  CAS  PubMed  Google Scholar 

  123. Ruhnke M, Schmidt-Westhausen A, Trautmann M (1997) In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 41:575–577

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sanati H, Belanger P, Fratti R et al (1997) A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob Agents Chemother 41:2492–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hazen C, Baron J, Colombo L et al (2003) Comparison of the susceptibilities of Candida spp. to fluconazole and voriconazole in a 4-year global evaluation using disk diffusion. J Clin Microbiol 41:5623–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Anderson B (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3:547–556

    Article  CAS  PubMed  Google Scholar 

  127. Richardson D (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56:i5–i11

    Article  CAS  PubMed  Google Scholar 

  128. Sangeorzan A, Bradley F, He X et al (1994) Epidemiology of oral candidiasis in HIV-infected patients: colonization, infection, treatment, and emergence of fluconazole resistance. Am J Med 97:339–346

    Article  CAS  PubMed  Google Scholar 

  129. Johnson M, Warnock W (1995) Azole drug resistance in yeasts. J Antimicrob Chemother 36:751–755

    Article  CAS  PubMed  Google Scholar 

  130. Meunier F, Aoun M, Bitar N (1992) Candidemia in immunocompromised patients. Clin Infect Dis 14:S120–S125

    Article  PubMed  Google Scholar 

  131. White J, Habib R, Vanthuyne A et al (2001) Combined topical flucytosine and amphotericin B for refractory vaginal Candida glabrata infections. Sex Transm Infect 77:212–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kojic M, Darouiche O (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ada G (1991) Vaccine development. Real and imagined dangers. Nature 349:369

    Article  CAS  PubMed  Google Scholar 

  134. Mochon B, Cutler E (2005) Is a vaccine needed against Candida albicans? Med Mycol 43:97–115

    Article  CAS  PubMed  Google Scholar 

  135. Huang C, Lin Y, Leu S et al (1998) Yeast carriage on hands of hospital personnel working in intensive care units. J Hosp Infect 39:47–55

    Article  CAS  PubMed  Google Scholar 

  136. Hilleman R (2002) Overview of the needs and realities for developing new and improved vaccines in the 21st century. Intervirology 45:199–211

    Article  CAS  PubMed  Google Scholar 

  137. Milstien J, Lambert S (2002) Emergency response vaccines--a challenge for the public sector and the vaccine industry. Vaccine 21:146–154

    Article  PubMed  Google Scholar 

  138. Owais M, Massod K, Agrewala N et al (2001) Use of liposome as an immunopotentiating delivery system: in perspective of vaccine development. Scand J Immunol 54:125–132

    Article  CAS  PubMed  Google Scholar 

  139. Naider F, Shenbagamurthi P, Steinfeld S et al (1983) Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob Agents Chemother 24:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Denning W (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    Article  CAS  PubMed  Google Scholar 

  141. Farah S, Ashman B, Challacombe J (2000) Oral candidosis. Clin Dermatol 18:553–562

    Article  CAS  PubMed  Google Scholar 

  142. Fidel L Jr (2004) History and new insights into host defense against vaginal candidiasis. Trends Microbiol 12:220–227

    Article  CAS  PubMed  Google Scholar 

  143. Nucci M, Colombo AL, Spector N et al (1997) Breakthrough candidemia in neutropenic patients. Clin Infect Dis 24:275–276

    Article  CAS  PubMed  Google Scholar 

  144. Casadevall A (1995) Antibody immunity and invasive fungal infections. Infect Immun 63:4211–4218

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hannula J, Saarela M, Jousimies-Somer H et al (1999) Age-related acquisition of oral and nasopharyngeal yeast species and stability of colonization in young children. Oral Microbiol Immunol 14:176–182

    Article  CAS  PubMed  Google Scholar 

  146. Chauhan A, Zubair S, Nadeem A et al (2014) Escheriosome-mediated cytosolic delivery of PLK1-specific siRNA: potential in treatment of liver cancer in BALB/c mice. Nanomedicine (Lond) 9:407–420

    Article  CAS  Google Scholar 

  147. Singha H, Mallick I, Jana C et al (2008) Escheriosomes entrapped DNA vaccine co-expressing Cu-Zn superoxide dismutase and IL-18 confers protection against Brucella abortus. Microbes Infect 10:1089–1096

    Google Scholar 

  148. Loftus J, Fung E, Roncaglia P et al (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dadachova E, Bryan RA, Huang X et al (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:e457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Joseph H, Thomas K, Kyung K et al (1998) Book ISBN: 978-1-55581-501-1

    Google Scholar 

  151. Alvarez M, Burn T, Luo Y et al (2009) The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol 9:51. doi:10.1186/1471-2180-9-51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Saag MS, Graybill RJ, Larsen RA et al (2000) Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 30:710–718

    Article  CAS  PubMed  Google Scholar 

  153. Martínez P, Gil L, López-Ribot L et al (1998) Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin Microbiol Rev 11:121–141

    PubMed  PubMed Central  Google Scholar 

  154. Vibhagool A, Sungkanuparph S, Mootsikapun P et al (2003) Discontinuation of secondary prophylaxis for cryptococcal meningitis in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy: a prospective, multicenter, randomized study. Clin Infect Dis 36:1329–1331

    Article  PubMed  Google Scholar 

  155. Schaars F, Meintjes A, Morroni C et al (2006) Outcome of AIDS-associated cryptococcal meningitis initially treated with 200 mg/day or 400 mg/day of fluconazole. BMC Infect Dis 6:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ahmad E, Fatima T, Owais M et al (2011) Beaded plasma clot: a potent sustained-release, drug-delivery system. Ther Deliv 2:573–583

    Article  CAS  PubMed  Google Scholar 

  157. Wingfield T (2001) Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. doi:10.1002/0471140864.psa03fs13

    Google Scholar 

  158. Ahmad N, Masood K, Owais M (2001) Fusogenic potential of prokaryotic membrane lipids. Implication in vaccine development. Eur J Biochem 268:5667–5675

    Article  CAS  PubMed  Google Scholar 

  159. Pietrella D, Mazzolla R, Lupo P et al (2002) Mannoprotein from Cryptococcus neoformans promotes T-helper type 1 anticandidal responses in mice. Infect Immun 70:6621–6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank the coordinator of the department for allowing us to avail required facilities of the department to complete this study. Asim Azhar is thankful to UGC for providing financial assistance in terms of Kothari postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Owais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zubair, S., Azhar, A., Khan, N., Ahmad, E., Ajmal, M., Owais, M. (2017). Nanoparticle-Based Mycosis Vaccine. In: Kalkum, M., Semis, M. (eds) Vaccines for Invasive Fungal Infections. Methods in Molecular Biology, vol 1625. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7104-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7104-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7103-9

  • Online ISBN: 978-1-4939-7104-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics