Skip to main content

Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis

  • Protocol
  • First Online:
PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1620))

Abstract

This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine–pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html, and its online version is located at http://primerdigital.com/tools/pcr.html.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker-Daniels J (2012) Current PCR methods. Mater Methods 2:119. doi:10.13070/mm.en.2.119

    Google Scholar 

  2. Tisi LC, Gandelman O, Kiddle G, Mcelgunn C (2010) Nucleic acid amplification. Canada Patent CA2417798

    Google Scholar 

  3. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63. doi:10.1093/nar/28.12.e63

    Article  CAS  Google Scholar 

  4. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  5. Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. In: Valla S, Lale R (eds) DNA cloning and assembly methods, Methods in molecular biology, vol 1116. Humana, New York, pp 271–302. doi:10.1007/978-1-62703-764-8_18

  6. Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98(2):137–144. doi:10.1016/j.ygeno.2011.04.009

    Article  CAS  Google Scholar 

  7. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15):2471–2472. doi:10.1093/bioinformatics/bth254

    Article  CAS  Google Scholar 

  8. Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NO, Sailor CA, Dawson RB, Peek AS (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36:163–169. doi:10.1093/nar/gkn198

    Article  Google Scholar 

  9. Bekaert M, Teeling EC (2008) UniPrime: a workflow-based platform for improved universal primer design. Nucleic Acids Res 36(10):e56. doi:10.1093/nar/gkn191

    Article  Google Scholar 

  10. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  11. Smykal P, Kalendar R, Ford R, Macas J, Griga M (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity (Edinb) 103(2):157–167. doi:10.1038/hdy.2009.45

    Article  CAS  Google Scholar 

  12. Giegerich R, Meyer F, Schleiermacher C (1996) GeneFisher--software support for the detection of postulated genes. Proc Int Conf Intell Syst Mol Biol 4:68–77

    CAS  Google Scholar 

  13. Gadberry MD, Malcomber ST, Doust AN, Kellogg EA (2005) Primaclade--a flexible tool to find conserved PCR primers across multiple species. Bioinformatics 21(7):1263–1264. doi:10.1093/bioinformatics/bti134

    Article  CAS  Google Scholar 

  14. Nomenclature Committee of the International Union of Biochemistry (NC-IUB) (1984) Nomenclature for incompletely specified bases in nucleic acid sequences. http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

  15. Allawi HT, SantaLucia J Jr (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36(34):10581–10594. doi:10.1021/bi962590c

    Article  CAS  Google Scholar 

  16. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465

    Article  CAS  Google Scholar 

  17. Le Novere N (2001) MELTING, computing the melting temperature of nucleic acid duplex. Bioinformatics 17(12):1226–1227. doi:10.1093/bioinformatics/17.12.1226

    Article  Google Scholar 

  18. Bolton ET, McCarthy BJ (1962) A general method for the isolation of RNA complementary to DNA. Proc Natl Acad Sci U S A 48(8):1390–1397

    Article  CAS  Google Scholar 

  19. Guedin A, Gros J, Alberti P, Mergny JL (2010) How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res 38(21):7858–7868. doi:10.1093/nar/gkq639

    Article  CAS  Google Scholar 

  20. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to ΦX 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6(11):3543–3558. doi:10.1093/nar/6.11.3543

    Article  CAS  Google Scholar 

  21. von Ahsen N, Wittwer CT, Schutz E (2001) Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47(11):1956–1961

    Google Scholar 

  22. Gabrielian A, Bolshoy A (1999) Sequence complexity and DNA curvature. Comput Chem 23(3–4):263–274. doi:10.1016/S0097-8485(99)00007-8

    Article  CAS  Google Scholar 

  23. Orlov YL, Potapov VN (2004) Complexity: an internet resource for analysis of DNA sequence complexity. Nucleic Acids Res 32(Web Server issue):628–633. doi:10.1093/nar/gkh466

    Article  Google Scholar 

  24. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069. doi:10.1016/S0006-3495(97)78756-3

    Article  CAS  Google Scholar 

  25. Peyret N, Seneviratne PA, Allawi HT, SantaLucia J Jr (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal a.A, C.C, G.G, and T.T mismatches. Biochemistry 38(12):3468–3477. doi:10.1021/bi9825091

    Article  CAS  Google Scholar 

  26. Watkins NE Jr, SantaLucia J Jr (2005) Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res 33(19):6258–6267. doi:10.1093/nar/gki918

    Article  CAS  Google Scholar 

  27. Sen D, Gilbert W (1992) Guanine quartet structures. Methods Enzymol 211:191–199

    Article  CAS  Google Scholar 

  28. Il'icheva IA, Florent'ev VL (1992) Four-stranded complexes of oligonucleotides--quadruplexes. Mol Biol 26(3):512–531

    Google Scholar 

  29. Shing Ho P (1994) The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. Proc Natl Acad Sci U S A 91(20):9549–9553

    Article  Google Scholar 

  30. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725. doi:10.1093/nar/gkp026

    Article  CAS  Google Scholar 

  31. SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440. doi:10.1146/annurev.biophys.32.110601.141800

    Article  CAS  Google Scholar 

  32. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res 18(22):6531–6535. doi:10.1093/nar/18.22.6531

    Article  CAS  Google Scholar 

  33. Welsh J, Mcclelland M (1990) Fingerprinting genomes using pcr with arbitrary primers. Nucleic Acids Res 18(24):7213–7218. doi:10.1093/nar/18.24.7213

    Article  CAS  Google Scholar 

  34. Kalendar R, Schulman A (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1(5):2478–2484. doi:10.1038/nprot.2006.377

    Article  CAS  Google Scholar 

  35. Chang RY, O'Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102(5):773–781. doi:10.1007/s001220051709

    Article  CAS  Google Scholar 

  36. Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT (1989) Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci U S A 86(17):6686–6690

    Article  CAS  Google Scholar 

  37. Sinnett D, Deragon JM, Simard LR, Labuda D (1990) Alumorphs—human DNA polymorphisms detected by polymerase chain reaction using Alu-specific primers. Genomics 7(3):331–334

    Article  CAS  Google Scholar 

  38. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467. doi:10.1159/000084979

    Article  CAS  Google Scholar 

  39. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2(4):924–932. doi:10.1038/nprot.2007.132

    Article  CAS  Google Scholar 

  40. Higasa K, Hayashi K (2002) Ordered catenation of sequence-tagged sites and multiplexed SNP genotyping by sequencing. Nucleic Acids Res 30(3):E11

    Article  Google Scholar 

  41. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7):e6441. doi:10.1371/journal.pone.0006441

    Article  Google Scholar 

Download references

Acknowledgments

Web tools are available free, provided for noncommercial research and education use only. They may not be reproduced or distributed for commercial use. This work was supported by the companies PrimerDigital Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Kalendar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kalendar, R., Tselykh, T.V., Khassenov, B., Ramanculov, E.M. (2017). Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 1620. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7060-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7060-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7059-9

  • Online ISBN: 978-1-4939-7060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics