Skip to main content

Characterization of the Low-Molecular-Weight Human Plasma Peptidome

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomicsĀ in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845ā€“867

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226ā€“3245

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Putnam RW (1975) The plasma proteins. Academic Press, New York, NY

    Google ScholarĀ 

  4. Moritz RL, Ji H, Schutz F et al (2004) A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal Chem 76:4811ā€“4824

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Bjorhall K, Miliotis T, Davidsson P (2004) Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics 5:307ā€“317

    ArticleĀ  Google ScholarĀ 

  6. Lowenthal MS, Mehta AI, Frogale K et al (2005) Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem 51:1933ā€“1945

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Zhou M, Lucas DA, Chan KC et al (2004) An investigation into the human serum "interactome". Electrophoresis 25:1289ā€“1298

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Lopez MF, Mikulskis A, Kuzdzal S et al (2005) High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin Chem 51:1946ā€“1954

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Albrethsen J, Bogebo R, Gammeltoft S et al (2005) Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer 5:8

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Liotta LA, Petricoin EF (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J Clin Invest 116:26ā€“30

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Lai ZW, Petrera A, Schilling O (2015) The emerging role of the peptidome in biomarker discovery and degradome profiling. Biol Chem 396:185ā€“192

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Greening DW, Kapp EA, Ji H et al (2013) Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment. Biochim Biophys Acta 1834:2396ā€“2407

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228ā€“237

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Antwi K, Hostetter G, Demeure MJ et al (2009) Analysis of the plasma peptidome from pancreas cancer patients connects a peptide in plasma to overexpression of the parent protein in tumors. J Proteome Res 8:4722ā€“4731

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Bedin C, Crotti S, Ragazzi E et al (2015) Alterations of the plasma Peptidome profiling in colorectal cancer progression. J Cell Physiol 231(4):915-925

    Google ScholarĀ 

  16. Shen Y, Tolic N, Liu T et al (2010) Blood peptidome-degradome profile of breast cancer. PLoS One 5:e13133

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Bassani-Sternberg M, Barnea E, Beer I et al (2010) Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci U S A 107:18769ā€“18776

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Karpova MA, Moshkovskii SA, Toropygin IY et al (2010) Cancer-specific MALDI-TOF profiles of blood serum and plasma: biological meaning and perspectives. J Proteomics 73:537ā€“551

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Mahboob S, Mohamedali A, Ahn SB et al (2015) Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteomics 127:300ā€“309

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Bery A, Leung F, Smith CR et al (2014) Deciphering the ovarian cancer ascites fluid peptidome. Clin Proteomics 11:13

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Di Meo A, Pasic MD, Yousef GM (2016) Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 7(32):52460ā€“52474

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Gelman JS, Sironi J, Berezniuk I et al (2013) Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One 8:e53263

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Jia C, Lietz CB, Ye H et al (2013) A multi-scale strategy for discovery of novel endogenous neuropeptides in the crustacean nervous system. J Proteomics 91:1ā€“12

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Kalaora S, Barnea E, Merhavi-Shoham E et al (2016) Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 7:5110ā€“5117

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Labots M, Schutte LM, van der Mijn JC et al (2014) Mass spectrometry-based serum and plasma peptidome profiling for prediction of treatment outcome in patients with solid malignancies. Oncologist 19:1028ā€“1039

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Sasaki K, Sato K, Akiyama Y et al (2002) Peptidomics-based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines. Cancer Res 62:4894ā€“4898

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. E-Kobon T, Thongararm P, Roytrakul S et al (2016) Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput Struct Biotechnol J 14: 49ā€“57

    Google ScholarĀ 

  28. Wang F, Zhu J, Hu L et al (2012) Comprehensive analysis of the N and C terminus of endogenous serum peptides reveals a highly conserved cleavage site pattern derived from proteolytic enzymes. Protein Cell 3:669ā€“674

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Xu Z, Wu C, Xie F et al (2015) Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res 14:422ā€“433

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Harper RG, Workman SR, Schuetzner S et al (2004) Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis 25:1299ā€“1306

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Tirumalai RS, Chan KC, Prieto DA et al (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096ā€“1103

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Di Girolamo F, Alessandroni J, Somma P et al (2009) Pre-analytical operating procedures for serum low molecular weight protein profiling. J Proteomics 73(3):667ā€“677

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  33. Tammen H, Schulte I, Hess R et al (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5:3414ā€“3422

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Zheng X, Baker H, Hancock WS (2006) Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer. J Chromatogr A 1120:173ā€“184

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Hu L, Li X, Jiang X et al (2007) Comprehensive peptidome analysis of mouse livers by size exclusion chromatography prefractionation and nanoLC-MS/MS identification. J Proteome Res 6:801ā€“808

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Jung WW, Phark S, Oh S et al (2009) Analysis of low molecular weight plasma proteins using ultrafiltration and large gel two-dimensional electrophoresis. Proteomics 9:1827ā€“1840

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76ā€“85

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Neuhoff V, Arold N, Taube D et al (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis 9:255ā€“262

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Greening DW, Simpson RJ (2010) A centrifugal ultrafiltration strategy for isolating the low-molecular weight (< or =25K) component of human plasma proteome. J Proteomics 73:637ā€“648

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367ā€“1372

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Luber CA, Cox J, Lauterbach H et al (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32:279ā€“289

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Rai AJ, Gelfand CA, Haywood BC et al (2005) HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262ā€“3277

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Banks RE, Stanley AJ, Cairns DA et al (2005) Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin Chem 51:1637ā€“1649

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Ferguson RE, Hochstrasser D, Banks R (2007) Impact of preanalytical variables on the analysis of biological fluids in proteomic studies. Proteomics Clin Appl 1:739ā€“746

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. West-Norager M, Kelstrup CD, Schou C et al (2007) Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 847:30ā€“37

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Thorpe JD, Duan X, Forrest R et al (2007) Effects of blood collection conditions on ovarian cancer serum markers. PLoS One 2:e1281

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Cheryan M (1998) Ultrafiltration and microfiltration handbook. CRC Press, Boca Raton, FL

    Google ScholarĀ 

  48. Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8:259ā€“266

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported, in part, by the National Health and Medical Research Council (NHMRC) of Australia project grant #1057741 (R.J.S.), La Trobe University Leadership RFA Grant (D.W.G.), and La Trobe Institute for Molecular Science Biomedical Fellowship (D.W.G.). We acknowledge the La Trobe University-Comprehensive Proteomics Platform for providing infrastructure and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Greening .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Greening, D.W., Simpson, R.J. (2017). Characterization of the Low-Molecular-Weight Human Plasma Peptidome. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics