Advertisement

Red Blood Cells in Clinical Proteomics

  • Ana Sofia Carvalho
  • Manuel S. Rodriguez
  • Rune Matthiesen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1619)

Abstract

Red blood cells (RBCs) are known for their role in oxygen and carbon dioxide transport. The main function of RBCs is directly linked to many diseases that cause low oxygen levels in tissues such as congenital heart disease in adults, chronic obstructive pulmonary disease, sleep apnea, sickle cell disease, etc. Red blood cells are a direct target for a number of parasitic diseases such as malaria (Plasmodium) and similar parasites of the phylum Apicomplexa (Toxoplasma, Theileria, Eimeria, Babesia, and Cryptosporidium). RBC membrane components, in particular, are suitable targets for the discovery of drugs against parasite interaction. There is also evidence that RBCs release growth and survival factors, thereby linking RBCs with cancer. RBCs are abundant and travel throughout the body; consequently changes in RBC proteome potentially reflect other diseases as well. This chapter describes erythrocyte isolation from blood and its fractionation into RBC membrane and soluble cytosolic fractions. Alternative procedures for mass spectrometry analysis of RBC membrane proteome will be presented.

Key words

Red blood cell Proteome Membranar proteins Mass spectrometry Proteases Infection 

Notes

Acknowledgments

RM is supported by FCT investigator program 2012 (IF/01002/2012). ASC is supported by grant SFRH/BPD/85569/2012 funded by Fundação para a Ciência e Tecnologia.

References

  1. 1.
    Dean L (2005) Chapter 1. National Center for Biotechnology Information: Bethesda, MD. https://www.ncbi.nlm.nih.gov/books/NBK2263/
  2. 2.
    Goodman SR, Kurdia A, Ammann L, Kakhniashvili D, Daescu O (2007) The human red blood cell proteome and interactome. Exp Biol Med (Maywood) 232:1391–1408. doi: 10.3181/0706-MR-156 CrossRefGoogle Scholar
  3. 3.
    van Gestel RA et al (2010) Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE. J Proteomics 73:456–465. doi: 10.1016/j.jprot.2009.08.010 CrossRefPubMedGoogle Scholar
  4. 4.
    D'Amici GM, Rinalducci S, Zolla L (2007) Proteomic analysis of RBC membrane protein degradation during blood storage. J Proteome Res 6:3242–3255. doi: 10.1021/pr070179d CrossRefPubMedGoogle Scholar
  5. 5.
    De Palma A et al (2010) Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis. J Chromatogr A 1217:5328–5336. doi: 10.1016/j.chroma.2010.06.045 CrossRefPubMedGoogle Scholar
  6. 6.
    Pesciotta EN et al (2012) A label-free proteome analysis strategy for identifying quantitative changes in erythrocyte membranes induced by red cell disorders. J Proteomics 76:194–202. doi: 10.1016/j.jprot.2012.08.010 CrossRefPubMedGoogle Scholar
  7. 7.
    D’Amici GM, Rinalducci S, Zolla L (2011) An easy preparative gel electrophoretic method for targeted depletion of hemoglobin in erythrocyte cytosolic samples. Electrophoresis 32:1319–1322. doi: 10.1002/elps.201000659 CrossRefPubMedGoogle Scholar
  8. 8.
    Walpurgis K et al (2012) Validated hemoglobin-depletion approach for red blood cell lysate proteome analysis by means of 2D PAGE and Orbitrap MS. Electrophoresis 33:2537–2545. doi: 10.1002/elps.201200151 CrossRefPubMedGoogle Scholar
  9. 9.
    Ringrose JH et al (2008) Highly efficient depletion strategy for the two most abundant erythrocyte soluble proteins improves proteome coverage dramatically. J Proteome Res 7:3060–3063. doi: 10.1021/pr8001029 CrossRefPubMedGoogle Scholar
  10. 10.
    Pesciotta EN et al (2015) In-depth, label-free analysis of the erythrocyte cytoplasmic proteome in diamond blackfan anemia identifies a unique inflammatory signature. PLoS One 10:e0140036. doi: 10.1371/journal.pone.0140036 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pasini EM et al (2006) In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108:791–801. doi: 10.1182/blood-2005-11-007799 CrossRefPubMedGoogle Scholar
  12. 12.
    Pasini EM et al (2008) Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell. Mol Cell Proteomics 7:1317–1330. doi: 10.1074/mcp.M700458-MCP200 CrossRefPubMedGoogle Scholar
  13. 13.
    Feliciano A et al (2016) Evening-morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: correlation with polysomnographic and metabolic parameters. Biochim Biophys Acta 1863(2):621–629. doi: 10.1016/j.bbadis.2016.11.019 CrossRefPubMedGoogle Scholar
  14. 14.
    Chakrabarti A, Halder S, Karmakar S (2016) Erythrocyte and platelet proteomics in hematological disorders. Proteomics Clin Appl 10:403–414. doi: 10.1002/prca.201500080 CrossRefPubMedGoogle Scholar
  15. 15.
    Mata-Cantero L et al (2016) New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. J Proteomics 139:45–59. doi: 10.1016/j.jprot.2016.03.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Azkargorta M, Escobes I, Elortza F, Matthiesen R, Rodriguez MS (2016) TUBEs-mass spectrometry for identification and analysis of the ubiquitin-proteome. Methods Mol Biol 1449:177–192. doi: 10.1007/978-1-4939-3756-1_9 CrossRefPubMedGoogle Scholar
  17. 17.
    Swaney DL et al (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10:676–682. doi: 10.1038/nmeth.2519 CrossRefPubMedGoogle Scholar
  18. 18.
    Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678. doi: 10.1021/pr900748n CrossRefPubMedGoogle Scholar
  19. 19.
    Mann K, Edsinger E (2014) The Lottia gigantea shell matrix proteome: re-analysis including MaxQuant iBAQ quantitation and phosphoproteome analysis. Protein Sci 12:28. doi: 10.1186/1477-5956-12-28 CrossRefGoogle Scholar
  20. 20.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi: 10.1038/nbt.1511 CrossRefPubMedGoogle Scholar
  21. 21.
    Carvalho AS et al (2014) Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress. Mol Cell Proteomics 13:3294–3307. doi: 10.1074/mcp.M113.034363 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Duncan DT, Craig R, Link AJ (2005) Parallel tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem. J Proteome Res 4:1842–1847. doi: 10.1021/pr050058i CrossRefPubMedGoogle Scholar
  23. 23.
    Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME (2016) RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res 5:1408. doi: 10.12688/f1000research.9005.1 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hegedus T et al (2015) Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database (Oxford) 2015:bav056. doi: 10.1093/database/bav056 CrossRefGoogle Scholar
  25. 25.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi: 10.1006/jmbi.2000.4315 CrossRefPubMedGoogle Scholar
  26. 26.
    Carvalho AS, Molina H, Matthiesen R (2016) New insights into functional regulation in MS-based drug profiling. Sci Rep 6:18826. doi: 10.1038/srep18826 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Ana Sofia Carvalho
    • 1
  • Manuel S. Rodriguez
    • 2
    • 3
  • Rune Matthiesen
    • 4
  1. 1.Computational and Experimental Biology Group, Nova Medical School/ Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
  2. 2.Advanced Technology Institute in Life Sciences (ITAV)CNRS-USR3505ToulouseFrance
  3. 3.University of Toulouse III-Paul SabatierToulouseFrance
  4. 4.Computational and Experimental Biology Group, CEDOC—Chronic Diseases Research Center, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal

Personalised recommendations