Advertisement

Genome-Wide Analysis of MicroRNA-Regulated Transcripts

  • David Chevalier
  • Glen M. BorchertEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1617)

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by either degrading transcripts or repressing translation. Over the past decade the significance of miRNAs has been unraveled by the characterization of their involvement in crucial cellular functions and the development of disease. However, continued progress in understanding the endogenous importance of miRNAs, as well as their potential uses as therapeutic tools, has been hindered by the difficulty of positively identifying miRNA targets. To face this challenge algorithmic approaches have primarily been utilized to date, but strictly mathematical models have thus far failed to produce a generally accurate, widely accepted methodology for accurate miRNA target determination. As such, several laboratory-based, comprehensive strategies for experimentally identifying all cellular miRNA regulations simultaneously have recently been developed. This chapter discusses the advantages and limitations of both classic and comprehensive strategies for miRNA target prediction.

Key words

CLIP Genome-wide analysis miRNA miRNA target prediction RNA immunoprecipitation 

References

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  2. 2.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862CrossRefPubMedGoogle Scholar
  3. 3.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi: 10.1038/35002607 CrossRefPubMedGoogle Scholar
  4. 4.
    Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88(5):637–646CrossRefPubMedGoogle Scholar
  5. 5.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520CrossRefPubMedGoogle Scholar
  6. 6.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798CrossRefPubMedGoogle Scholar
  7. 7.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486. doi: 10.1038/nature08170 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3(11):881–886. doi: 10.1038/nmeth954 CrossRefPubMedGoogle Scholar
  10. 10.
    Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055. doi: 10.1093/bioinformatics/btp565 CrossRefPubMedGoogle Scholar
  11. 11.
    Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63. doi: 10.1038/nature07228 CrossRefPubMedGoogle Scholar
  12. 12.
    Kumar A, Wong AK, Tizard ML, Moore RJ, Lefevre C (2012) miRNA_Targets: a database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics 100(6):352–356. doi: 10.1016/j.ygeno.2012.08.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71. doi: 10.1038/nature07242 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Reyes-Herrera PH, Ficarra E, Acquaviva A, Macii E (2011) miREE: miRNA recognition elements ensemble. BMC Bioinformatics 12:454. doi: 10.1186/1471–2105–12-454 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi: 10.1038/nature03315 CrossRefPubMedGoogle Scholar
  16. 16.
    Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi: 10.1016/j.molcel.2007.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27(6):2240–2252. doi: 10.1128/MCB.02005-06 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34(16):e107. doi: 10.1093/nar/gkl590 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hobert O (2007) miRNAs play a tune. Cell 131(1):22–24. doi: 10.1016/j.cell.2007.09.031 CrossRefPubMedGoogle Scholar
  20. 20.
    Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34CrossRefPubMedGoogle Scholar
  21. 21.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838. doi: 10.1126/science.1062961 CrossRefPubMedGoogle Scholar
  22. 22.
    Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659. doi: 10.1101/gad.927801 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271. doi: 10.1126/science.1062039 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nakamoto M, Jin P, O'Donnell WT, Warren ST (2005) Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet 14(24):3813–3821. doi: 10.1093/hmg/ddi397 CrossRefPubMedGoogle Scholar
  25. 25.
    Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13(8):1198–1204. doi: 10.1261/rna.563707 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. doi: 10.1038/nature04303 CrossRefPubMedGoogle Scholar
  27. 27.
    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611. doi: 10.1126/science.1139253 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141. doi: 10.1016/j.gene.2005.12.031 CrossRefPubMedGoogle Scholar
  29. 29.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726. doi: 10.1038/nmeth1079 CrossRefPubMedGoogle Scholar
  30. 30.
    Thomas JR, Hergenrother PJ (2008) Targeting RNA with small molecules. Chem Rev 108(4):1171–1224. doi: 10.1021/cr0681546 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang S, Chen L, Jung EJ, Calin GA (2010) Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 87(6):754–758. doi: 10.1038/clpt.2010.46 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7(11):e1000238. doi: 10.1371/journal.pbio.1000238 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840. doi: 10.1038/nature09267 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu H, Pan S, Gu S, Bradbury EM, Chen X (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom 16(22):2115–2123. doi: 10.1002/rcm.831 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336. doi: 10.1074/jbc.M611393200 CrossRefPubMedGoogle Scholar
  37. 37.
    Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45(17):3104–3118. doi: 10.1016/j.ejca.2009.09.014 CrossRefPubMedGoogle Scholar
  38. 38.
    Tenenbaum SA, Carson CC, Lager PJ, Keene JD (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci U S A 97(26):14085–14090. doi: 10.1073/pnas.97.26.14085 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meier J, Hovestadt V, Zapatka M, Pscherer A, Lichter P, Seiffert M (2013) Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP. RNA Biol 10(6):1018–1029. doi: 10.4161/rna.24553 CrossRefPubMedGoogle Scholar
  40. 40.
    Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4(2):76–84CrossRefPubMedGoogle Scholar
  41. 41.
    Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104(49):19291–19296. doi: 10.1073/pnas.0709971104 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO (2008) Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 3(5):e2126. doi: 10.1371/journal.pone.0002126 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, Sewell AK, Liu X, Yates JR 3rd, Han M (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28(4):598–613. doi: 10.1016/j.molcel.2007.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10(11):1692–1694. doi: 10.1261/rna.7151404 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. doi: 10.1126/science.1090095 CrossRefPubMedGoogle Scholar
  46. 46.
    Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17(2):173–179. doi: 10.1038/nsmb.1745 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29(7):607–614. doi: 10.1038/nbt.1873 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010a) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi: 10.1016/j.cell.2010.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010b) PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41:2034. doi: 10.3791/2034 Google Scholar
  50. 50.
    Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8(7):559–564. doi: 10.1038/nmeth.1608 CrossRefPubMedGoogle Scholar
  51. 51.
    Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp 50:2638. doi: 10.3791/2638 Google Scholar
  52. 52.
    Broughton JP, Pasquinelli AE (2013) Identifying argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods 63(2):119–125. doi: 10.1016/j.ymeth.2013.03.033 CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665. doi: 10.1016/j.cell.2013.03.043 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Travis AJ, Moody J, Helwak A, Tollervey D, Kudla G (2014) Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65(3):263–273. doi: 10.1016/j.ymeth.2013.10.015 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gregory BD, O’Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14(6):854–866. doi: 10.1016/j.devcel.2008.04.005 CrossRefPubMedGoogle Scholar
  56. 56.
    Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25(1):130–131. doi: 10.1093/bioinformatics/btn604 CrossRefPubMedGoogle Scholar
  57. 57.
    German MA, Luo S, Schroth G, Meyers BC, Green PJ (2009) Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc 4(3):356–362. doi: 10.1038/nprot.2009.8 CrossRefPubMedGoogle Scholar
  58. 58.
    German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8):941–946. doi: 10.1038/nbt1417 CrossRefPubMedGoogle Scholar
  59. 59.
    Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J 62(5):742–759. doi: 10.1111/j.1365-313X.2010.04187.x CrossRefPubMedGoogle Scholar
  60. 60.
    Bracken CP, Szubert JM, Mercer TR, Dinger ME, Thomson DW, Mattick JS, Michael MZ, Goodall GJ (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39(13):5658–5668. doi: 10.1093/nar/gkr110 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 38(6):781–788. doi: 10.1016/j.molcel.2010.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38(6):789–802. doi: 10.1016/j.molcel.2010.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Eckardt NA (2009) Investigating translational repression by microRNAs in Arabidopsis. Plant Cell 21(6):1624. doi: 10.1105/tpc.109.210613 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chiu HS, Llobet-Navas D, Yang X, Chung WJ, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, Moss T, Lu Y, Ram P, Silva J, Mills GB, Califano A, Sumazin P (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 25(2):257–267. doi: 10.1101/gr.178194.114 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–W276. doi: 10.1093/nar/gkp292 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Maragkakis M, Vergoulis T, Alexiou P, Reczko M, Plomaritou K, Gousis M, Kourtis K, Koziris N, Dalamagas T, Hatzigeorgiou AG (2011) DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Res 39(Web Server issue):W145–W148. doi: 10.1093/nar/gkr294 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173. doi: 10.1093/nar/gkt393 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69. doi: 10.1186/1471-2105-8-69 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ahmadi H, Ahmadi A, Azimzadeh-Jamalkandi S, Shoorehdeli MA, Salehzadeh-Yazdi A, Bidkhori G, Masoudi-Nejad A (2013) HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens. Genomics 101(2):94–100. doi: 10.1016/j.ygeno.2012.11.005 CrossRefPubMedGoogle Scholar
  70. 70.
    Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38(Web Server issue):W352–W359. doi: 10.1093/nar/gkq423 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in drosophila. Genome Biol 5(1):R1. doi: 10.1186/gb-2003-5-1-r1 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12:300. doi: 10.1186/1471–2105–12-300 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. doi: 10.1038/ng1536 CrossRefPubMedGoogle Scholar
  74. 74.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284. doi: 10.1038/ng2135 CrossRefPubMedGoogle Scholar
  75. 75.
    Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue):W155–W159. doi: 10.1093/nar/gkr319 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517. doi: 10.1261/rna.5248604 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi: 10.1016/j.cell.2004.12.035 CrossRefPubMedGoogle Scholar
  78. 78.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi: 10.1101/gr.082701.108 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18(10):1139–1146. doi: 10.1038/nsmb.2115 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005. doi: 10.7554/eLife.05005 CrossRefPubMedCentralGoogle Scholar
  81. 81.
    Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4(12):1045–1049. doi: 10.1038/nmeth1130 CrossRefPubMedGoogle Scholar
  82. 82.
    Bandyopadhyay S, Ghosh D, Mitra R, Zhao Z (2015) MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep 5:8004. doi: 10.1038/srep08004 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Thadani R, Tammi MT (2006) MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 7(Suppl 5):S20. doi: 10.1186/1471-2105-7-S5-S20 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wang X, El Naqa IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3):325–332. doi: 10.1093/bioinformatics/btm595 CrossRefPubMedGoogle Scholar
  85. 85.
    Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M, Ding Y, Ambros V (2008) mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 5(9):813–819. doi: 10.1038/nmeth.1247 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Friedman Y, Karsenty S, Linial M (2014) miRror-suite: decoding coordinated regulation by microRNAs. Database (Oxford) 2014:bau043. doi: 10.1093/database/bau043 CrossRefGoogle Scholar
  87. 87.
    Friedman Y, Naamati G, Linial M (2010) MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 26(15):1920–1921. doi: 10.1093/bioinformatics/btq298 CrossRefPubMedGoogle Scholar
  88. 88.
    Yang Y, Wang YP, Li KB (2008) MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinformatics 9(Suppl 12):S4. doi: 10.1186/1471-2105-9-S12-S4 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naive Bayes for microRNA target predictions--machine learning for microRNA targets. Bioinformatics 23(22):2987–2992. doi: 10.1093/bioinformatics/btm484 CrossRefPubMedGoogle Scholar
  90. 90.
    Uren PJ, Bahrami-Samani E, Burns SC, Qiao M, Karginov FV, Hodges E, Hannon GJ, Sanford JR, Penalva LO, Smith AD (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28(23):3013–3020. doi: 10.1093/bioinformatics/bts569 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    van Dongen S, Abreu-Goodger C, Enright AJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5(12):1023–1025. doi: 10.1038/nmeth.1267 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Coronnello C, Benos PV (2013) ComiR: Combinatorial microRNA target prediction tool. Nucleic Acids Res 41(Web Server issue):W159–W164. doi: 10.1093/nar/gkt379 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90. doi: 10.1186/gb-2010-11-8-r90 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Bandyopadhyay S, Mitra R (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25(20):2625–2631. doi: 10.1093/bioinformatics/btp503 CrossRefPubMedGoogle Scholar
  95. 95.
    Chandra V, Girijadevi R, Nair AS, Pillai SS, Pillai RM (2010) MTar: a computational microRNA target prediction architecture for human transcriptome. BMC Bioinformatics 11(Suppl 1):S2. doi: 10.1186/1471-2105-11-S1-S2 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 14(Suppl 2):S4. doi: 10.1186/1471–2105-14-S2-S4 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of BiologyEast Georgia State CollegeSwainsboroUSA
  2. 2.Department of PharmacologyUniversity of South AlabamaMobileUSA

Personalised recommendations