Advertisement

Viral MicroRNAs, Host MicroRNAs Regulating Viruses, and Bacterial MicroRNA-Like RNAs

  • Sara-Elizabeth Cardin
  • Glen M. BorchertEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1617)

Abstract

As masters of genome-wide regulation, miRNAs represent a key component in the complex architecture of cellular processes. Over the last decade, it has become increasingly apparent that miRNAs have many important roles in the development of disease and cancer. Recently, however, their role in viral and bacterial gene regulation as well as host gene regulation during disease progression has become a field of interest. Due to their small size, miRNAs are the ideal mechanism for bacteria and viruses that have limited room in their genomes, as a single miRNA can target up to ~30 genes. Currently, only a limited number of miRNA and miRNA-like RNAs have been found in bacteria and viruses, a number that is sure to increase rapidly in the future. The interactions of these small noncoding RNAs in such primitive species have wide-reaching effects, from increasing viral and bacterial proliferation, better responses to stress, increased virulence, to manipulation of host immune responses to provide a more ideal environment for these pathogens to thrive. Here, we explore those roles to obtain a better grasp of just how complicated disease truly is.

Key words

Bacteria CRISPR miRNA Regulation sRNA Virus 

References

  1. 1.
    Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340(6233):467–468. doi: 10.1038/340467a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Jore MM, Brouns SJ, van der Oost J (2012) RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol 4(6). doi: 10.1101/cshperspect.a003657
  3. 3.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. doi: 10.1093/nar/gkt1181 CrossRefPubMedGoogle Scholar
  4. 4.
    Grey F (2015) Role of microRNAs in herpesvirus latency and persistence. J Gen Virol 96(Pt 4):739–751. doi: 10.1099/vir.0.070862-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Lee CH, Kim JH, Lee SW (2014) The role of microRNAs in hepatitis C virus replication and related liver diseases. J Microbiol 52(6):445–451. doi: 10.1007/s12275-014-4267-x CrossRefPubMedGoogle Scholar
  6. 6.
    Lamontagne J, Steel LF, Bouchard MJ (2015) Hepatitis B virus and microRNAs: complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 21(24):7375–7399. doi: 10.3748/wjg.v21.i24.7375 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Goodrum F, Caviness K, Zagallo P (2012) Human cytomegalovirus persistence. Cell Microbiol 14(5):644–655. doi: 10.1111/j.1462-5822.2012.01774.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grundhoff A, Sullivan CS (2011) Virus-encoded microRNAs. Virology 411(2):325–343. doi: 10.1016/j.virol.2011.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shwetha S, Gouthamchandra K, Chandra M, Ravishankar B, Khaja MN, Das S (2013) Circulating miRNA profile in HCV infected serum: novel insight into pathogenesis. Sci Rep 3:1555. doi: 10.1038/srep01555 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goldberger T, Mandelboim O (2014) The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 36(6):659–674. doi: 10.1007/s00281-014-0447-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Compton T, Feire A (2007) Early events in human cytomegalovirus infection. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581. doi: 10.1126/science.1113329 CrossRefPubMedGoogle Scholar
  13. 13.
    Niepmann M (2009) Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8(10):1473–1477CrossRefPubMedGoogle Scholar
  14. 14.
    Shimakami T, Yamane D, Welsch C, Hensley L, Jangra RK, Lemon SM (2012) Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus. J Virol 86(13):7372–7383. doi: 10.1128/JVI.00513-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang C, Huys A, Thibault PA, Wilson JA (2012) Requirements for human Dicer and TRBP in microRNA-122 regulation of HCV translation and RNA abundance. Virology 433(2):479–488. doi: 10.1016/j.virol.2012.08.039 CrossRefPubMedGoogle Scholar
  16. 16.
    Wilson JA, Zhang C, Huys A, Richardson CD (2011) Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 85(5):2342–2350. doi: 10.1128/JVI.02046-10 CrossRefPubMedGoogle Scholar
  17. 17.
    Murakami Y, Aly HH, Tajima A, Inoue I, Shimotohno K (2009) Regulation of the hepatitis C virus genome replication by miR-199a. J Hepatol 50(3):453–460. doi: 10.1016/j.jhep.2008.06.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Pietschmann T (2009) Regulation of hepatitis C virus replication by microRNAs. J Hepatol 50(3):441–444. doi: 10.1016/j.jhep.2008.12.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng JC, Yeh YJ, Tseng CP, Hsu SD, Chang YL, Sakamoto N, Huang HD (2012) Let-7b is a novel regulator of hepatitis C virus replication. Cell Mol Life Sci 69(15):2621–2633. doi: 10.1007/s00018-012-0940-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449(7164):919–922. doi: 10.1038/nature06205 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuzembayeva M, Hayes M, Sugden B (2014) Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Curr Opin Virol 7:61–65. doi: 10.1016/j.coviro.2014.04.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Pedroza-Torres A, Lopez-Urrutia E, Garcia-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza O, Lopez-Camarillo C, De Leon DC, Fernandez-Retana J, Cerna-Cortes JF, Perez-Plasencia C (2014) MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules 19(5):6263–6281. doi: 10.3390/molecules19056263 CrossRefPubMedGoogle Scholar
  23. 23.
    Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D (2012) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61(2):278–289. doi: 10.1136/gut.2011.239145 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, Sun S (2012) Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology 56(5):1631–1640. doi: 10.1002/hep.25849 CrossRefPubMedGoogle Scholar
  25. 25.
    Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA (2010) MicroRNA expression variability in human cervical tissues. PLoS One 5(7):e11780. doi: 10.1371/journal.pone.0011780 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu S, Song L, Zhang L, Zeng S, Gao F (2015) miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1. Biochem Biophys Res Commun 459(4):679–685. doi: 10.1016/j.bbrc.2015.03.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG, Xie X (2011) Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer 47(14):2166–2174. doi: 10.1016/j.ejca.2011.04.037 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang S, Liu F, Mao X, Huang J, Yang J, Yin X, Wu L, Zheng L, Wang Q (2015) Elevation of miR-27b by HPV16 E7 inhibits PPARgamma expression and promotes proliferation and invasion in cervical carcinoma cells. Int J Oncol. doi: 10.3892/ijo.2015.3162 Google Scholar
  29. 29.
    Shinozaki-Ushiku A, Kunita A, Isogai M, Hibiya T, Ushiku T, Takada K, Fukayama M (2015) Profiling of virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis. J Virol 89(10):5581–5591. doi: 10.1128/JVI.03639-14 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pandya D, Mariani M, He S, Andreoli M, Spennato M, Dowell-Martino C, Fiedler P, Ferlini C (2015) Epstein-Barr virus microRNA expression increases aggressiveness of solid malignancies. PLoS One 10(9):e0136058. doi: 10.1371/journal.pone.0136058 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wan XX, Yi H, Qu JQ, He QY, Xiao ZQ (2015) Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues. Oncol Rep 34(5):2585–2601. doi: 10.3892/or.2015.4237 PubMedGoogle Scholar
  32. 32.
    Bazot Q, Paschos K, Skalska L, Kalchschmidt JS, Parker GA, Allday MJ (2015) Epstein-Barr virus proteins EBNA3A and EBNA3C together induce expression of the oncogenic microRNA cluster miR-221/miR-222 and ablate expression of its target p57KIP2. PLoS Pathog 11(7):e1005031. doi: 10.1371/journal.ppat.1005031 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Anastasiadou E, Garg N, Bigi R, Yadav S, Campese AF, Lapenta C, Spada M, Cuomo L, Botta A, Belardelli F, Frati L, Ferretti E, Faggioni A, Trivedi P (2015) Epstein-Barr virus infection induces miR-21 in terminally differentiated malignant B cells. Int J Cancer 137(6):1491–1497. doi: 10.1002/ijc.29489 CrossRefPubMedGoogle Scholar
  34. 34.
    Ruiz AJ, Russell SJ (2015) MicroRNAs and oncolytic viruses. Curr Opin Virol 13:40–48. doi: 10.1016/j.coviro.2015.03.007 CrossRefPubMedGoogle Scholar
  35. 35.
    Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R, Fechner H, Muller OJ (2011) microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18(2):199–209. doi: 10.1038/gt.2010.141 CrossRefPubMedGoogle Scholar
  36. 36.
    Bo Y, Guo G, Yao W (2013) MiRNA-mediated tumor specific delivery of TRAIL reduced glioma growth. J Neuro-Oncol 112(1):27–37. doi: 10.1007/s11060-012-1033-y CrossRefGoogle Scholar
  37. 37.
    Liu J, Ma L, Li C, Zhang Z, Yang G, Zhang W (2013) Tumor-targeting TRAIL expression mediated by miRNA response elements suppressed growth of uveal melanoma cells. Mol Oncol 7(6):1043–1055. doi: 10.1016/j.molonc.2013.08.003 CrossRefPubMedGoogle Scholar
  38. 38.
    Kelly EJ, Russell SJ (2009) MicroRNAs and the regulation of vector tropism. Mol Ther 17(3):409–416. doi: 10.1038/mt.2008.288 CrossRefPubMedGoogle Scholar
  39. 39.
    Bogerd HP, Skalsky RL, Kennedy EM, Furuse Y, Whisnant AW, Flores O, Schultz KL, Putnam N, Barrows NJ, Sherry B, Scholle F, Garcia-Blanco MA, Griffin DE, Cullen BR (2014) Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J Virol 88(14):8065–8076. doi: 10.1128/JVI.00985-14 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T (2014) Identification of host miRNAs that may limit human rhinovirus replication. World J Biol Chem 5(4):437–456. doi: 10.4331/wjbc.v5.i4.437 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kuehl U, Lassner D, Gast M, Stroux A, Rohde M, Siegismund C, Wang X, Escher F, Gross M, Skurk C, Tschoepe C, Loebel M, Scheibenbogen C, Schultheiss HP, Poller W (2015) Differential cardiac microRNA expression predicts the clinical course in human enterovirus cardiomyopathy. Circ Heart Fail 8(3):605–618. doi: 10.1161/CIRCHEARTFAILURE.114.001475 CrossRefPubMedGoogle Scholar
  42. 42.
    Fu YR, Liu XJ, Li XJ, Shen ZZ, Yang B, Wu CC, Li JF, Miao LF, Ye HQ, Qiao GH, Rayner S, Chavanas S, Davrinche C, Britt WJ, Tang Q, McVoy M, Mocarski E, Luo MH (2015) MicroRNA miR-21 attenuates human cytomegalovirus replication in neural cells by targeting Cdc25a. J Virol 89(2):1070–1082. doi: 10.1128/JVI.01740-14 CrossRefPubMedGoogle Scholar
  43. 43.
    Takaoka A, Yanai H (2006) Interferon signalling network in innate defence. Cell Microbiol 8(6):907–922. doi: 10.1111/j.1462-5822.2006.00716.x CrossRefPubMedGoogle Scholar
  44. 44.
    Hou W, Tian Q, Zheng J, Bonkovsky HL (2010) MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 51(5):1494–1504. doi: 10.1002/hep.23401 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bruni R, Marcantonio C, Tritarelli E, Tataseo P, Stellacci E, Costantino A, Villano U, Battistini A, Ciccaglione AR (2011) An integrated approach identifies IFN-regulated microRNAs and targeted mRNAs modulated by different HCV replicon clones. BMC Genomics 12:485. doi: 10.1186/1471-2164-12-485 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, Gadola S, Cerundolo V, Borysiewicz LK, McMichael AJ, Wilkinson GW (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287(5455):1031CrossRefPubMedGoogle Scholar
  47. 47.
    Nachmani D, Zimmermann A, Oiknine Djian E, Weisblum Y, Livneh Y, Khanh Le VT, Galun E, Horejsi V, Isakov O, Shomron N, Wolf DG, Hengel H, Mandelboim O (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10(2):e1003963. doi: 10.1371/journal.ppat.1003963 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Guo YE, Steitz JA (2014) Virus meets host microRNA: the destroyer, the booster, the hijacker. Mol Cell Biol 34(20):3780–3787. doi: 10.1128/MCB.00871-14 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ensser A, Fleckenstein B (2005) T-cell transformation and oncogenesis by gamma2-herpesviruses. Adv Cancer Res 93:91–128. doi: 10.1016/S0065-230X(05)93003-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Wassarman DA, Lee SI, Steitz JA (1989) Nucleotide sequence of HSUR 5 RNA from herpesvirus saimiri. Nucleic Acids Res 17(3):1258CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328(5985):1563–1566. doi: 10.1126/science.1187197 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486. doi: 10.1038/nature08170 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Guo YE, Riley KJ, Iwasaki A, Steitz JA (2014) Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function. Mol Cell 54(1):67–79. doi: 10.1016/j.molcel.2014.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, Cognat V, Marcinowski L, Dolken L, Pfeffer S (2010) Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16(2):307–315. doi: 10.1261/rna.1819210 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Libri V, Helwak A, Miesen P, Santhakumar D, Borger JG, Kudla G, Grey F, Tollervey D, Buck AH (2012) Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci U S A 109(1):279–284. doi: 10.1073/pnas.1114204109 CrossRefPubMedGoogle Scholar
  56. 56.
    Marcinowski L, Tanguy M, Krmpotic A, Radle B, Lisnic VJ, Tuddenham L, Chane-Woon-Ming B, Ruzsics Z, Erhard F, Benkartek C, Babic M, Zimmer R, Trgovcich J, Koszinowski UH, Jonjic S, Pfeffer S, Dolken L (2012) Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 8(2):e1002510. doi: 10.1371/journal.ppat.1002510 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Papenfort K, Vogel J (2014) Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 4:91. doi: 10.3389/fcimb.2014.00091 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nishizawa T, Suzuki H (2015) Gastric carcinogenesis and underlying molecular mechanisms: Helicobacter pylori and novel targeted therapy. Biomed Res Int 2015:794378. doi: 10.1155/2015/794378 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Vogel J, Wagner EG (2007) Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 10(3):262–270. doi: 10.1016/j.mib.2007.06.001 CrossRefPubMedGoogle Scholar
  60. 60.
    Viegas SC, Arraiano CM (2008) Regulating the regulators: how ribonucleases dictate the rules in the control of small non-coding RNAs. RNA Biol 5(4):230–243CrossRefPubMedGoogle Scholar
  61. 61.
    Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3(12). doi: 10.1101/cshperspect.a003798
  62. 62.
    Harris JF, Micheva-Viteva S, Li N, Hong-Geller E (2013) Small RNA-mediated regulation of host-pathogen interactions. Virulence 4(8):785–795. doi: 10.4161/viru.26119 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891. doi: 10.1016/j.molcel.2011.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Michaux C, Verneuil N, Hartke A, Giard JC (2014) Physiological roles of small RNA molecules. Microbiology 160(Pt 6):1007–1019. doi: 10.1099/mic.0.076208-0 CrossRefPubMedGoogle Scholar
  65. 65.
    Frohlich KS, Vogel J (2009) Activation of gene expression by small RNA. Curr Opin Microbiol 12(6):674–682. doi: 10.1016/j.mib.2009.09.009 CrossRefPubMedGoogle Scholar
  66. 66.
    Fozo EM, Hemm MR, Storz G (2008) Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72(4):579–589. doi: 10.1128/MMBR.00025-08. Table of ContentsCrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hawiger J, Veach RA, Zienkiewicz J (2015) New paradigms in sepsis: from prevention to protection of failing microcirculation. J Thromb Haemost. doi: 10.1111/jth.13061 PubMedPubMedCentralGoogle Scholar
  68. 68.
    Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, Catherinet C, Prado-Lourenco L, Levin MG, Thacker S, Sethupathy P, Barter PJ, Remaley AT, Rye KA (2014) HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 5:3292. doi: 10.1038/ncomms4292 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, Registry M, Blackwell TS, Baron RM, Feinberg MW (2012) MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest 122(6):1973–1990. doi: 10.1172/JCI61495 PubMedPubMedCentralGoogle Scholar
  70. 70.
    Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190. doi: 10.1038/nrg2749 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561. doi: 10.1099/mic.0.28048-0 Google Scholar
  72. 72.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, Elste JE, Gregoire NS, Kim JA, Koehler WW, Lengerich JC, Medema AA, Nguyen MA, Ower GD, Rarick MA, Strong BN, Tardi NJ, Tasker NM, Wozniak DJ, Gatto C, Larson ED (2011) Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 1(1):8–17. doi: 10.4161/mge.1.1.15766 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Filshtein TJ, Mackenzie CO, Dale MD, Dela-Cruz PS, Ernst DM, Frankenberger EA, He C, Heath KL, Jones AS, Jones DK, King ER, Maher MB, Mitchell TJ, Morgan RR, Sirobhushanam S, Halkyard SD, Tiwari KB, Rubin DA, Borchert GM, Larson ED (2012) OrbId: Origin-based identification of microRNA targets. Mob Genet Elements 2(4):184–192. doi: 10.4161/mge.21617 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Roberts JT, Cardin SE, Borchert GM (2014) Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob Genet Elements 4:e29255. doi: 10.4161/mge.29255 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Roberts JT, Cooper EA, Favreau CJ, Howell JS, Lane LG, Mills JE, Newman DC, Perry TJ, Russell ME, Wallace BM, Borchert GM (2013) Continuing analysis of microRNA origins: formation from transposable element insertions and noncoding RNA mutations. Mob Genet Elements 3(6):e27755. doi: 10.4161/mge.27755 CrossRefPubMedGoogle Scholar
  77. 77.
    Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186. doi: 10.1038/nrmicro1793 CrossRefPubMedGoogle Scholar
  78. 78.
    Li HH, Ma F, Zeng X, Wang JY, Yuan P, Fan Y, Xu BH (2011) Comparison of fluorescence in situ hybridization and immunohistochemistry assessment for Her-2 status in breast cancer and its relationship to clinicopathological characteristics. Zhonghua Yi Xue Za Zhi 91(2):76–80PubMedGoogle Scholar
  79. 79.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7. doi: 10.1186/1745-6150-1-7 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jiang M, Sang X, Hong Z (2012) Beyond nutrients: food-derived microRNAs provide cross-kingdom regulation. Bioessays 34(4):280–284. doi: 10.1002/bies.201100181 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of South AlabamaMobileUSA
  2. 2.Department of PharmacologyUniversity of South AlabamaMobileUSA

Personalised recommendations