Skip to main content

Whole-Genome Enrichment Using RNA Probes and Sequencing of Chlamydia trachomatis Directly from Clinical Samples

  • Protocol
  • First Online:
Diagnostic Bacteriology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1616))

Abstract

Whole-genome sequencing is a powerful, high-resolution tool that can be used to generate accurate data on bacterial population structure, phylogeography, and mutations associated with antimicrobial resistance. The ability to sequence pathogen genomes directly from clinical specimens, without the requirement for in vitro culturing, is attractive in terms of time- and labor-saving, especially in the case of slow-growing, or obligate intracellular pathogens, such as Chlamydia trachomatis. However clinical samples typically contain too low levels of pathogen nucleic acid, plus relatively high levels of human and natural microbiota DNA/RNA, to make this a viable option. Using a combination of whole-genome enrichment and deep sequencing, which has been proven to be a non-mutagenic approach, we can capture all known variations found within C. trachomatis genomes. The method is a consistent and sensitive tool that enables rapid whole-genome sequencing of C. trachomatis directly from clinical samples and has the potential to be adapted to other pathogens with a similar clonal nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köser CU, Ellington MJ, Cartwright EJP et al (2012) Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8:e1002824

    Article  PubMed  PubMed Central  Google Scholar 

  2. Köser CU, Bryant JM, Becq J et al (2013) Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med 369:290–292

    Article  PubMed  Google Scholar 

  3. Olsen RJ, Long SW, Musser JM (2012) Bacterial genomics in infectious disease and the clinical pathology laboratory. Arch Pathol Lab Med 136:1414–1422

    Article  PubMed  Google Scholar 

  4. WHO (2012) | Global incidence and prevalence of selected curable sexually transmitted infections - 2008. ISBN: 978 92 4 150383 9

    Google Scholar 

  5. WHO (2011) | Prevalence and incidence of selected sexually transmitted infections. Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis and Trichomonas vaginalis. Methods and results used by WHO to generate 2005 estimates. ISBN: 978 92 4 150245 0

    Google Scholar 

  6. Mylonas I (2012) Female genital Chlamydia trachomatis infection: where are we heading? Arch Gynecol Obstet 285:1271–1285

    Article  PubMed  Google Scholar 

  7. Mariotti SP, Pascolini D, Rose-Nussbaumer J (2009) Trachoma: global magnitude of a preventable cause of blindness. Br J Ophthalmol 93:563–568

    Article  CAS  PubMed  Google Scholar 

  8. Blandford JM, Gift TL (2006) Productivity losses attributable to untreated chlamydial infection and associated pelvic inflammatory disease in reproductive-aged women. Sex Transm Dis 33:S117–S121

    Article  PubMed  Google Scholar 

  9. Burton MJ, Mabey DCW (2009) The global burden of trachoma: a review. PLoS Negl Trop Dis 3:e460

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pedersen LN, Herrmann B, Møller JK (2009) Typing Chlamydia trachomatis: from egg yolk to nanotechnology. FEMS Immunol Med Microbiol 55:120–130

    Article  CAS  PubMed  Google Scholar 

  11. Millman KL, Tavaré S, Dean D (2001) Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol 183:5997–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Psarrakos P, Papadogeorgakis E, Sachse K et al (2011) Chlamydia trachomatis ompA genotypes in male patients with urethritis in Greece: conservation of the serovar distribution and evidence for mixed infections with Chlamydophila abortus. Mol Cell Probes 25:168–173

    Article  CAS  PubMed  Google Scholar 

  13. Stothard DR, Boguslawski G, Jones RB (1998) Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infect Immun 66:3618–3625

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris SR, Clarke IN, Seth-Smith HMB et al (2012) Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 44:413–419. S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Neill CE, Seth-Smith HMB, Van Der Pol B et al (2013) Chlamydia trachomatis clinical isolates identified as tetracycline resistant do not exhibit resistance in vitro: whole-genome sequencing reveals a mutation in porB but no evidence for tetracycline resistance genes. Microbiology 159:748–756

    Article  PubMed  Google Scholar 

  16. Seth-Smith HMB, Harris SR, Scott P et al (2013) Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA. Nat Protoc 8:2404–2412

    Article  CAS  PubMed  Google Scholar 

  17. Seth-Smith HMB, Harris SR, Skilton RJ et al (2013) Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res 23:855–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christiansen MT, Brown AC, Kundu S et al (2014) Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. BMC Infect Dis 14:591

    Article  PubMed  PubMed Central  Google Scholar 

  19. Depledge DP, Palser AL, Watson SJ et al (2011) Specific capture and whole-genome sequencing of viruses from clinical samples. PLoS One 6:e27805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Depledge DP, Kundu S, Jensen NJ et al (2014) Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol Biol Evol 31:397–409

    Article  CAS  PubMed  Google Scholar 

  21. Brown AC, Bryant JM, Einer-Jensen K et al (2015) Rapid whole genome sequencing of M. tuberculosisdirectly from clinical samples. J Clin Microbiol 53(7):2230–2237

    Google Scholar 

Download references

Acknowledgments

The PATHSEEK consortium received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No 304875. We acknowledge all the help from the other members of the consortium involved with the establishment of this methodology; particular thanks go to Helena Tutill, UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Claire Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brown, A.C., Christiansen, M.T. (2017). Whole-Genome Enrichment Using RNA Probes and Sequencing of Chlamydia trachomatis Directly from Clinical Samples. In: Bishop-Lilly, K. (eds) Diagnostic Bacteriology. Methods in Molecular Biology, vol 1616. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7037-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7037-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7035-3

  • Online ISBN: 978-1-4939-7037-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics