Methods for Studying the Role of RAAS in the Modulation of Vascular Repair-Relevant Functions of Stem/Progenitor Cells

  • Yagna P. R. JarajapuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1614)


In recent years, previously unknown functions have been conferred to the RAAS and have been explored in mechanistic studies and disease models. Implication of bone marrow stem/progenitor cells in the cardiovascular protective or detrimental effects of RAAS is a prominent advancement because of the translational significance. Selected members of RAAS are now known to modulate migration, proliferation, and mobilization of bone marrow cells in response to ischemic insult, which are sensitive indicators of vascular repair-relevant functions. In this Chapter, protocols for most frequently used, in vitro, ex vivo, and in vivo assays to explore the potential of RAAS members to stimulate vascular repair-relevant functions of bone marrow stem/progenitor cells of human and murine origin.

Key words

CD34+ cells LSK cells Bone marrow Mobilization Flow cytometry Migration Proliferation 



The author wishes to acknowledge Mr. Shrinidh Joshi, and Mr. Goutham Vasam, for their contributions in refining some of the protocols described in this chapter.


  1. 1.
    Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655CrossRefPubMedGoogle Scholar
  2. 2.
    Jarajapu YP, Grant MB, Raizada MK (2012) ACE2/angiotensin-(1-7)/mas axis and cardiovascular regeneration. Curr Hypertens Rev 8(1):35–46CrossRefGoogle Scholar
  3. 3.
    Roks AJM, Rodgers K, Walther T (2011) Effects of the renin angiotensin system on vasculogenesis-related progenitor cells. Curr Opin Pharmacol 11:162–174CrossRefPubMedGoogle Scholar
  4. 4.
    Fadini GP, Derraro F, Quaini F et al (2014) Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 3(8):949–957CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jarajapu YP, Grant MB (2010) The promise of cell based therapies for diabetic complications: challenges and solutions. Circ Res 106(5):854–869CrossRefPubMedGoogle Scholar
  6. 6.
    Jarajapu YP, Caballero S, Verma A et al (2011) Blockade of NADPH oxidase restores vasoreparative function in diabetic CD34+ cells. Invest Ophthalmol Vis Sci 52(8):5093–5104CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jarajapu YP, Bhatwadekar AD, Caballero S et al (2013) Activation of the ACE2/angiotensin-(1-7)/mas receptor axis enhances the reparative function of dysfunctional diabetic endothelial progenitor cells. Diabetes 62(4):1258–1269CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Singh N, Vasam G, Pawar R et al (2014) Angiotensin-(1-7) reverses angiogenic dysfunction in corpus cavernosum by acting on the microvasculature and bone marrow-derived cells in diabetes. J Sex Med 11(9):2153–2163CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jarajapu YP, Hazra S, Segal M et al (2014) Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One 9(4):e93965CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Singh N, Joshi S, Guo L et al (2015) ACE2/Ang-(1-7)/mas axis stimulates vascular repair-relevant functions of CD34+ cells. Am J Physiol Heart Circ Physiol 309(10):H1687–H1707Google Scholar
  11. 11.
    Niiyama H, Huang NF, Rollins MD et al (2009) Murine model of hindlimb ischemia. J Vis Exp 23:1035. doi: 10.3791/1035 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesCollege of Health Professions, North Dakota State UniversityFargoUSA

Personalised recommendations