A Brief Introduction into the Renin-Angiotensin-Aldosterone System: New and Old Techniques

  • Sean E. ThatcherEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1614)


The renin-angiotensin-aldosterone system (RAAS) is a complex system of enzymes, receptors, and peptides that help to control blood pressure and fluid homeostasis. Techniques in studying the RAAS can be difficult due to such factors as peptide/enzyme stability and receptor localization. This paper gives a brief account of the different components of the RAAS and current methods in measuring each component. There is also a discussion of different methods in measuring stem and immune cells by flow cytometry, hypertension, atherosclerosis, oxidative stress, energy balance, and other RAAS-activated phenotypes. While studies on the RAAS have been performed for over 100 years, new techniques have allowed scientists to come up with new insights into this system. These techniques are detailed in this Methods in Molecular Biology Series and give students new to studying the RAAS the proper controls and technical details needed to perform each procedure.

Key words

Angiotensin Historical RAAS Techniques Methods 


  1. 1.
    Tigerstedt R, Bergman PQ (1898) Niere und Kreislauf1. Skand Arch Physiol 8(1):223–271. doi: 10.1111/j.1748-1716.1898.tb00272.x CrossRefGoogle Scholar
  2. 2.
    Stokes GS, Oates HF, Weber MA (1975) Angiotensin blockade in studies of the feedback control of renin release in rats and rabbits. Clin Sci Mol Med Suppl 2:33s–36sPubMedGoogle Scholar
  3. 3.
    Zanchetti A, Stella A, Leonetti G, Morganti A, Terzoli L (1976) Control of renin release: a review of experimental evidence and clinical implications. Am J Cardiol 37(4):675–691PubMedCrossRefGoogle Scholar
  4. 4.
    Chappell MC (2016) Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 310(2):H137–H152. doi: 10.1152/ajpheart.00618.2015 PubMedCrossRefGoogle Scholar
  5. 5.
    McDonald KM, Taher S, Aisenbrey G, De Torrente A, Schrier RW (1975) Effect of angiotensin II and an angiotensin II inhibitor on renin secretion in the dog. Am J Phys 228(5):1562–1567Google Scholar
  6. 6.
    Hartman D, Sagnella GA, Chesters CA, Macgregor GA (2004) Direct renin assay and plasma renin activity assay compared. Clin Chem 50(11):2159–2161. doi: 10.1373/clinchem.2004.033654 PubMedCrossRefGoogle Scholar
  7. 7.
    Skeggs LT Jr, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensin-converting enzyme. J Exp Med 103(3):295–299PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Allinson TM, Parkin ET, Condon TP, Schwager SL, Sturrock ED, Turner AJ, Hooper NM (2004) The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur J Biochem 271(12):2539–2547. doi: 10.1111/j.1432-1033.2004.04184.x PubMedCrossRefGoogle Scholar
  9. 9.
    Woodman ZL, Oppong SY, Cook S, Hooper NM, Schwager SL, Brandt WF, Ehlers MR, Sturrock ED (2000) Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochem J 347(Pt 3):711–718PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Danilov SM, Gordon K, Nesterovitch AB, Lunsdorf H, Chen Z, Castellon M, Popova IA, Kalinin S, Mendonca E, Petukhov PA, Schwartz DE, Minshall RD, Sturrock ED (2011) An angiotensin I-converting enzyme mutation (Y465D) causes a dramatic increase in blood ACE via accelerated ACE shedding. PLoS One 6(10):e25952. doi: 10.1371/journal.pone.0025952 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5(4):769–776PubMedCrossRefGoogle Scholar
  12. 12.
    Kohara K, Brosnihan KB, Ferrario CM (1993) Angiotensin(1-7) in the spontaneously hypertensive rat. Peptides 14(5):883–891PubMedCrossRefGoogle Scholar
  13. 13.
    Campbell WG Jr, Donohue JA, Duket LH (1980) Alterations in responses to bradykinin, angiotensin I, and angiotensin II during the induction phase of one-kidney, one-wrapped hypertension and associated arterial disease in rabbits. Am J Pathol 98(2):457–484PubMedPubMedCentralGoogle Scholar
  14. 14.
    Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383(Pt 1):45–51. doi: 10.1042/BJ20040634 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bernstein KE, Martin BM, Bernstein EA, Linton J, Striker L, Striker G (1988) The isolation of angiotensin-converting enzyme cDNA. J Biol Chem 263(23):11021–11024PubMedGoogle Scholar
  16. 16.
    Howard TE, Shai SY, Langford KG, Martin BM, Bernstein KE (1990) Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol 10(8):4294–4302PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Brecher P, Tercyak A, Chobanian AV (1981) Properties of angiotensin-converting enzyme in intact cerebral microvessels. Hypertension 3(2):198–204PubMedCrossRefGoogle Scholar
  18. 18.
    Yamashiro Y, Papke CL, Kim J, Ringuette LJ, Zhang QJ, Liu ZP, Mirzaei H, Wagenseil JE, Davis EC, Yanagisawa H (2015) Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice. Sci Signal 8(399):ra105. doi: 10.1126/scisignal.aab3141 PubMedCrossRefGoogle Scholar
  19. 19.
    Clarke NE, Fisher MJ, Porter KE, Lambert DW, Turner AJ (2012) Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PLoS One 7(4):e34747. doi: 10.1371/journal.pone.0034747. PONE-D-11-26032 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275(43):33238–33243. doi: 10.1074/jbc.M002615200. M002615200 [pii]PubMedCrossRefGoogle Scholar
  21. 21.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87(5):E1–E9PubMedCrossRefGoogle Scholar
  22. 22.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843. doi: 10.1074/jbc.M200581200. M200581200 [pii]PubMedCrossRefGoogle Scholar
  23. 23.
    Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 280(34):30113–30119. doi: 10.1074/jbc.M505111200 PubMedCrossRefGoogle Scholar
  24. 24.
    Der Sarkissian S, Grobe JL, Yuan L, Narielwala DR, Walter GA, Katovich MJ, Raizada MK (2008) Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension 51(3):712–718. doi: 10.1161/HYPERTENSIONAHA.107.100693 CrossRefGoogle Scholar
  25. 25.
    Welches WR, Brosnihan KB, Ferrario CM (1993) A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci 52(18):1461–1480PubMedCrossRefGoogle Scholar
  26. 26.
    Iyer SN, Ferrario CM, Chappell MC (1998) Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension 31(1 Pt 2):356–361PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrario CM, Chappell MC, Dean RH, Iyer SN (1998) Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis. J Am Soc Nephrol 9(9):1716–1722PubMedGoogle Scholar
  28. 28.
    Ishida M, Ogawa M, Kosaki G, Mega T, Ikenaka T (1983) Purification and characterization of the neutral endopeptidase from human kidney. J Biochem 94(1):17–24PubMedCrossRefGoogle Scholar
  29. 29.
    Lim GB (2014) Heart failure: LCZ696—a PARADIGM shift in treatment for heart failure. Nat Rev Cardiol 11(11):618. doi: 10.1038/nrcardio.2014.139 PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson BA, Nautiyal M, Gwathmey TM, Rose JC, Chappell MC (2015) Evidence for a mitochondrial angiotensin-(1-7) system in the kidney. Am J Physiol Renal Physiol 00479:02015. doi: 10.1152/ajprenal.00479.2015 Google Scholar
  31. 31.
    Yiannikouris F, Wang Y, Shoemaker R, Larian N, Thompson J, English VL, Charnigo R, Su W, Gong M, Cassis LA (2015) Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice. Hypertension 66(4):836–842. doi: 10.1161/HYPERTENSIONAHA.115.06040 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, Daugherty A, Cassis LA (2012) Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60(6):1524–1530. doi: 10.1161/HYPERTENSIONAHA.112.192690 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dzau VJ, Brody T, Ellison KE, Pratt RE, Ingelfinger JR (1987) Tissue-specific regulation of renin expression in the mouse. Hypertension 9(6 Pt 2):III36–III41PubMedGoogle Scholar
  34. 34.
    Gomez RA, Cassis L, Lynch KR, Chevalier RL, Wilfong N, Carey RM, Peach MJ (1988) Fetal expression of the angiotensinogen gene. Endocrinology 123(5):2298–2302. doi: 10.1210/endo-123-5-2298 PubMedCrossRefGoogle Scholar
  35. 35.
    Itoh N, Matsuda T, Ohtani R, Okamoto H (1989) Angiotensinogen production by rat hepatoma cells is stimulated by B cell stimulatory factor 2/interleukin-6. FEBS Lett 244(1):6–10PubMedCrossRefGoogle Scholar
  36. 36.
    Murakami E, Hiwada K, Kokubu T (1980) Effects of insulin and glucagon on production of renin substrate by the isolated rat liver. J Endocrinol 85(1):151–153PubMedCrossRefGoogle Scholar
  37. 37.
    Krakoff LR, Eisenfeld AJ (1977) Hormonal control of plasma renin substrate; (angiotensinogen). Circ Res 41(4 Suppl 2):43–46PubMedCrossRefGoogle Scholar
  38. 38.
    Dzau VJ, Herrmann HC (1982) Hormonal control of angiotensinogen production. Life Sci 30(7–8):577–584PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PL, Stein PE, Broughton Pipkin F, Read RJ (2010) A redox switch in angiotensinogen modulates angiotensin release. Nature 468(7320):108–111. doi: 10.1038/nature09505 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD (2004) Angiotensin II-induced vascular dysfunction is mediated by the AT1A receptor in mice. Hypertension 43(5):1074–1079. doi: 10.1161/01.HYP.0000123074.89717.3d PubMedCrossRefGoogle Scholar
  41. 41.
    Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292(1):C82–C97. doi: 10.1152/ajpcell.00287.2006 PubMedCrossRefGoogle Scholar
  42. 42.
    Simoes e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM (2013) ACE2, angiotensin-(1-7) and mas receptor axis in inflammation and fibrosis. Br J Pharmacol 169(3):477–492. doi: 10.1111/bph.12159 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351(6323):233–236. doi: 10.1038/351233a0 PubMedCrossRefGoogle Scholar
  44. 44.
    Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351(6323):230–233. doi: 10.1038/351230a0 PubMedCrossRefGoogle Scholar
  45. 45.
    Burson JM, Aguilera G, Gross KW, Sigmund CD (1994) Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Phys 267(2 Pt 1):E260–E267Google Scholar
  46. 46.
    Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A 92(8):3521–3525PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Oliverio MI, Best CF, Kim HS, Arendshorst WJ, Smithies O, Coffman TM (1997) Angiotensin II responses in AT1A receptor-deficient mice: a role for AT1B receptors in blood pressure regulation. Am J Phys 272(4 Pt 2):F515–F520Google Scholar
  48. 48.
    Poduri A, Owens AP 3rd, Howatt DA, Moorleghen JJ, Balakrishnan A, Cassis LA, Daugherty A (2012) Regional variation in aortic AT1b receptor mRNA abundance is associated with contractility but unrelated to atherosclerosis and aortic aneurysms. PLoS One 7(10):e48462. doi: 10.1371/journal.pone.0048462 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Herrera M, Sparks MA, Alfonso-Pecchio AR, Harrison-Bernard LM, Coffman TM (2013) Lack of specificity of commercial antibodies leads to misidentification of angiotensin type 1 receptor protein. Hypertension 61(1):253–258. doi: 10.1161/HYPERTENSIONAHA.112.203679 PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS (1999) Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem 274(16):10999–11006PubMedCrossRefGoogle Scholar
  51. 51.
    Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB, Premont RT, Coffman TM, Rockman HA, Lefkowitz RJ (2006) Beta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci U S A 103(44):16284–16289. doi: 10.1073/pnas.0607583103 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rakesh K, Yoo B, Kim IM, Salazar N, Kim KS, Rockman HA (2010) Beta-arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal 3(125):ra46. doi: 10.1126/scisignal.2000769 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nuyt AM, Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C (1999) Ontogeny of angiotensin II type 2 receptor mRNA expression in fetal and neonatal rat brain. J Comp Neurol 407(2):193–206PubMedCrossRefGoogle Scholar
  54. 54.
    Siragy HM, Inagami T, Ichiki T, Carey RM (1999) Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci U S A 96(11):6506–6510PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kemp BA, Howell NL, Gildea JJ, Keller SR, Padia SH, Carey RM (2014) AT(2) receptor activation induces natriuresis and lowers blood pressure. Circ Res 115(3):388–399. doi: 10.1161/CIRCRESAHA.115.304110 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sales VL, Sukhova GK, Lopez-Ilasaca MA, Libby P, Dzau VJ, Pratt RE (2005) Angiotensin type 2 receptor is expressed in murine atherosclerotic lesions and modulates lesion evolution. Circulation 112(21):3328–3336. doi: 10.1161/CIRCULATIONAHA.105.541714 PubMedCrossRefGoogle Scholar
  57. 57.
    Valero-Esquitino V, Lucht K, Namsolleck P, Monnet-Tschudi F, Stubbe T, Lucht F, Liu M, Ebner F, Brandt C, Danyel LA, Villela DC, Paulis L, Thoene-Reineke C, Dahlof B, Hallberg A, Unger T, Sumners C, Steckelings UM (2015) Direct angiotensin type 2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond) 128(2):95–109. doi: 10.1042/CS20130601 CrossRefGoogle Scholar
  58. 58.
    Ali Q, Wu Y, Hussain T (2013) Chronic AT2 receptor activation increases renal ACE2 activity, attenuates AT1 receptor function and blood pressure in obese Zucker rats. Kidney Int 84(5):931–939. doi: 10.1038/ki.2013.193 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Joseph JP, Mecca AP, Regenhardt RW, Bennion DM, Rodriguez V, Desland F, Patel NA, Pioquinto DJ, Unger T, Katovich MJ, Steckelings UM, Sumners C (2014) The angiotensin type 2 receptor agonist compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke. Neuropharmacology 81:134–141. doi: 10.1016/j.neuropharm.2014.01.044 PubMedCrossRefGoogle Scholar
  60. 60.
    Jackson TR, Blair LA, Marshall J, Goedert M, Hanley MR (1988) The mas oncogene encodes an angiotensin receptor. Nature 335(6189):437–440. doi: 10.1038/335437a0 PubMedCrossRefGoogle Scholar
  61. 61.
    Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor mas. Proc Natl Acad Sci U S A 100(14):8258–8263. doi: 10.1073/pnas.1432869100 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lemos VS, Silva DM, Walther T, Alenina N, Bader M, Santos RA (2005) The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol 46(3):274–279PubMedCrossRefGoogle Scholar
  63. 63.
    Reis AB, Araujo FC, Pereira VM, Dos Reis AM, Santos RA, Reis FM (2010) Angiotensin (1-7) and its receptor mas are expressed in the human testis: implications for male infertility. J Mol Histol 41(1):75–80. doi: 10.1007/s10735-010-9264-8 PubMedCrossRefGoogle Scholar
  64. 64.
    Leal MC, Pinheiro SV, Ferreira AJ, Santos RA, Bordoni LS, Alenina N, Bader M, Franca LR (2009) The role of angiotensin-(1-7) receptor mas in spermatogenesis in mice and rats. J Anat 214(5):736–743. doi: 10.1111/j.1469-7580.2009.01058.x PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Santos RA, Castro CH, Gava E, Pinheiro SV, Almeida AP, Paula RD, Cruz JS, Ramos AS, Rosa KT, Irigoyen MC, Bader M, Alenina N, Kitten GT, Ferreira AJ (2006) Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice. Hypertension 47(5):996–1002. doi: 10.1161/01.HYP.0000215289.51180.5c PubMedCrossRefGoogle Scholar
  66. 66.
    Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA (2008) Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57(2):340–347. doi: 10.2337/db07-0953 PubMedCrossRefGoogle Scholar
  67. 67.
    Silva AR, Aguilar EC, Alvarez-Leite JI, da Silva RF, Arantes RM, Bader M, Alenina N, Pelli G, Lenglet S, Galan K, Montecucco F, Mach F, Santos SH, Santos RA (2013) Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. Am J Physiol Regul Integr Comp Physiol 305(11):R1323–R1330. doi: 10.1152/ajpregu.00249.2013 PubMedCrossRefGoogle Scholar
  68. 68.
    Page IH, Helmer OM (1940) A crystalline pressor substance (Angiotonin) resulting from the reaction between renin and renin-activator. J Exp Med 71(1):29–42PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Menendez EB, Fasciolo JC, Houssay BA, Leloir LF, Munoz JM, Taquini AC (1943) Angiotonin or hypertensin. Science 98(2553):495. doi: 10.1126/science.98.2553.495 PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang F, Ren X, Zhao M, Zhou B, Han Y (2016) Angiotensin-(1-7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways. Sci Rep 6:34621. doi: 10.1038/srep34621 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM (2007) Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50(6):1093–1098. doi: 10.1161/HYPERTENSIONAHA.106.084848. HYPERTENSIONAHA.106.084848 [pii]PubMedCrossRefGoogle Scholar
  72. 72.
    Hayashi N, Yamamoto K, Ohishi M, Tatara Y, Takeya Y, Shiota A, Oguro R, Iwamoto Y, Takeda M, Rakugi H (2010) The counterregulating role of ACE2 and ACE2-mediated angiotensin 1-7 signaling against angiotensin II stimulation in vascular cells. Hypertens Res 33(11):1182–1185. doi: 10.1038/hr.2010.147. hr2010147 [pii]PubMedCrossRefGoogle Scholar
  73. 73.
    Thatcher SE, Zhang X, Howatt DA, Lu H, Gurley SB, Daugherty A, Cassis LA (2011) Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 31(4):758–765. doi: 10.1161/atvbaha.110.221614 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zhang F, Hu Y, Xu Q, Ye S (2010) Different effects of angiotensin II and angiotensin-(1-7) on vascular smooth muscle cell proliferation and migration. PLoS One 5(8):e12323. doi: 10.1371/journal.pone.0012323 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Klempin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112(8):1104–1111. doi: 10.1161/CIRCRESAHA.113.301077 PubMedCrossRefGoogle Scholar
  76. 76.
    Chen Z, Tan F, Erdos EG, Deddish PA (2005) Hydrolysis of angiotensin peptides by human angiotensin I-converting enzyme and the resensitization of B2 kinin receptors. Hypertension 46(6):1368–1373. doi: 10.1161/01.HYP.0000188905.20884.63 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Coutinho DC, Foureaux G, Rodrigues KD, Salles RL, Moraes PL, Murca TM, De Maria ML, Gomes ER, Santos RA, Guatimosim S, Ferreira AJ (2014) Cardiovascular effects of angiotensin A: a novel peptide of the renin-angiotensin system. J Renin-Angiotensin-Aldosterone Syst 15(4):480–486. doi: 10.1177/1470320312474856 PubMedCrossRefGoogle Scholar
  78. 78.
    Grobe N, Weir NM, Leiva O, Ong FS, Bernstein KE, Schmaier AH, Morris M, Elased KM (2013) Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry. Am J Physiol Cell Physiol 304(10):C945–C953. doi: 10.1152/ajpcell.00346.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Grobe N, Elased KM, Cool DR, Morris M (2012) Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. Am J Physiol Endocrinol Metab 302(8):E1016–E1024. doi: 10.1152/ajpendo.00515.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Carey RM, Levens NR, Peach MJ (1980) Studies of the functional role of the intrarenal renin-angiotensin system. Prog Biochem Pharmacol 17:6–13PubMedGoogle Scholar
  81. 81.
    Cassis LA, Saye J, Peach MJ (1988) Location and regulation of rat angiotensinogen messenger RNA. Hypertension 11(6 Pt 2):591–596PubMedCrossRefGoogle Scholar
  82. 82.
    Schelling P, Ganten U, Sponer G, Unger T, Ganten D (1980) Components of the renin-angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and the fate of angiotensin II. Neuroendocrinology 31(5):297–308PubMedCrossRefGoogle Scholar
  83. 83.
    Liu S, Xie Z, Daugherty A, Cassis LA, Pearson KJ, Gong MC, Guo Z (2013) Mineralocorticoid receptor agonists induce mouse aortic aneurysm formation and rupture in the presence of high salt. Arterioscler Thromb Vasc Biol 33(7):1568–1579. doi: 10.1161/ATVBAHA.112.300820 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Schwartz F, Hadas E, Harnik M, Solomon B (1990) Enzyme-linked immunosorbent assays for determination of plasma aldosterone using highly specific polyclonal antibodies. J Immunoass 11(2):215–234. doi: 10.1080/01971529008053270 CrossRefGoogle Scholar
  85. 85.
    Prome D, Viger A, Marquet A (1988) Use of tandem mass spectrometry (MS-MS) for aldosterone assay at the nanogram level in complex biological mixtures. Anal Biochem 172(1):264–269PubMedCrossRefGoogle Scholar
  86. 86.
    Lombes M, Farman N, Oblin ME, Baulieu EE, Bonvalet JP, Erlanger BF, Gasc JM (1990) Immunohistochemical localization of renal mineralocorticoid receptor by using an anti-idiotypic antibody that is an internal image of aldosterone. Proc Natl Acad Sci U S A 87(3):1086–1088PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Van Eekelen JA, Jiang W, De Kloet ER, Bohn MC (1988) Distribution of the mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus. J Neurosci Res 21(1):88–94. doi: 10.1002/jnr.490210113 PubMedCrossRefGoogle Scholar
  88. 88.
    Fukushima K, Sasano H, Sasaki I, Nagura H, Funayama Y, Matsuno S (1994) Increased expression of mineralocorticoid receptor in human ileum after total colectomy: immunohistochemical and immunoblotting studies. Tohoku J Exp Med 173(4):383–390PubMedCrossRefGoogle Scholar
  89. 89.
    Zennaro MC, Le Menuet D, Viengchareun S, Walker F, Ricquier D, Lombes M (1998) Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. J Clin Invest 101(6):1254–1260. doi: 10.1172/JCI1915 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Liu G, Grifman M, Keily B, Chatterton JE, Staal FW, Li QX (2006) Mineralocorticoid receptor is involved in the regulation of genes responsible for hepatic glucose production. Biochem Biophys Res Commun 342(4):1291–1296. doi: 10.1016/j.bbrc.2006.02.065 PubMedCrossRefGoogle Scholar
  91. 91.
    Carruthers BM, Ledray RD, Seraglia M, McIntosh HW, Walsh GC (1963) Effect of an aldosterone antagonist (spironolactone) on patients with severe congestive heart failure. Can Med Assoc J 89:633–641PubMedPubMedCentralGoogle Scholar
  92. 92.
    Lazar G, Pagano M, Agarwal MK (1990) Purification and characterization of the activated mineralocorticoid receptor from rat myocardium. Biochim Biophys Acta 1033(1):41–48PubMedCrossRefGoogle Scholar
  93. 93.
    Kornel L, Kanamarlapudi N, Travers T, Taff DJ, Patel N, Chen C, Baum RM, Raynor WJ (1982) Studies on high affinity binding of mineralo- and glucocorticoids in rabbit aorta cytosol. J Steroid Biochem 16(2):245–264PubMedCrossRefGoogle Scholar
  94. 94.
    Hilzendeger AM, Morgan DA, Brooks L, Dellsperger D, Liu X, Grobe JL, Rahmouni K, Sigmund CD, Mark AL (2012) A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am J Physiol Heart Circ Physiol 303(2):H197–H206. doi: 10.1152/ajpheart.00974.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Young CN, Morgan DA, Butler SD, Rahmouni K, Gurley SB, Coffman TM, Mark AL, Davisson RL (2015) Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis. Mol Metab 4(4):337–343. doi: 10.1016/j.molmet.2015.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Grobe JL, Grobe CL, Beltz TG, Westphal SG, Morgan DA, Xu D, de Lange WJ, Li H, Sakai K, Thedens DR, Cassis LA, Rahmouni K, Mark AL, Johnson AK, Sigmund CD (2010) The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab 12(5):431–442. doi: 10.1016/j.cmet.2010.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Contreras C, Nogueiras R, Dieguez C, Medina-Gomez G, Lopez M (2016) Hypothalamus and thermogenesis: heating the BAT, browning the WAT. Mol Cell Endocrinol. doi: 10.1016/j.mce.2016.08.002 PubMedGoogle Scholar
  98. 98.
    Littlejohn NK, Keen HL, Weidemann BJ, Claflin KE, Tobin KV, Markan KR, Park S, Naber MC, Gourronc FA, Pearson NA, Liu X, Morgan DA, Klingelhutz AJ, Potthoff MJ, Rahmouni K, Sigmund CD, Grobe JL (2016) Suppression of resting metabolism by the angiotensin AT2 receptor. Cell Rep 16(6):1548–1560. doi: 10.1016/j.celrep.2016.07.003 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95(3):588–593PubMedCrossRefGoogle Scholar
  100. 100.
    Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG (1999) Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 85(1):23–28PubMedCrossRefGoogle Scholar
  101. 101.
    Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273(24):15022–15029PubMedCrossRefGoogle Scholar
  102. 102.
    Touyz RM, Schiffrin EL (1999) Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34(4 Pt 2):976–982PubMedCrossRefGoogle Scholar
  103. 103.
    Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H (2000) Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 87(12):1195–1201PubMedCrossRefGoogle Scholar
  104. 104.
    Du J, Peng T, Scheidegger KJ, Delafontaine P (1999) Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism. Arterioscler Thromb Vasc Biol 19(9):2119–2126PubMedCrossRefGoogle Scholar
  105. 105.
    Modesti A, Bertolozzi I, Gamberi T, Marchetta M, Lumachi C, Coppo M, Moroni F, Toscano T, Lucchese G, Gensini GF, Modesti PA (2005) Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress. Diabetes 54(2):394–401PubMedCrossRefGoogle Scholar
  106. 106.
    Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20(10):2175–2183PubMedCrossRefGoogle Scholar
  107. 107.
    Song B, Jin H, Yu X, Zhang Z, Yu H, Ye J, Xu Y, Zhou T, Oudit GY, Ye JY, Chen C, Gao P, Zhu D, Penninger JM, Zhong JC (2013) Angiotensin-converting enzyme 2 attenuates oxidative stress and VSMC proliferation via the JAK2/STAT3/SOCS3 and profilin-1/MAPK signaling pathways. Regul Pept 185:44–51. doi: 10.1016/j.regpep.2013.06.007 PubMedCrossRefGoogle Scholar
  108. 108.
    Campbell JH, Fennessy P, Campbell GR (1992) Effect of perindopril on the development of atherosclerosis in the cholesterol-fed rabbit. Clin Exp Pharmacol Physiol Suppl 19:13–17PubMedCrossRefGoogle Scholar
  109. 109.
    Ambrosioni E, Bacchelli S, Degli Esposti D, Borghi C (1992) ACE-inhibitors and atherosclerosis. Eur J Epidemiol 8(Suppl 1):129–133PubMedCrossRefGoogle Scholar
  110. 110.
    Chobanian AV, Haudenschild CC, Nickerson C, Hope S (1992) Trandolapril inhibits atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Hypertension 20(4):473–477PubMedCrossRefGoogle Scholar
  111. 111.
    Nickenig G, Jung O, Strehlow K, Zolk O, Linz W, Scholkens BA, Bohm M (1997) Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Phys 272(6 Pt 2):H2701–H2707Google Scholar
  112. 112.
    Daugherty A, Rateri DL, Lu H, Inagami T, Cassis LA (2004) Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 110(25):3849–3857. doi: 10.1161/01.CIR.0000150540.54220.C4. 01.CIR.0000150540.54220.C4 [pii]PubMedCrossRefGoogle Scholar
  113. 113.
    Hirano T, Ran J, Adachi M (2006) Opposing actions of angiotensin II type 1 and 2 receptors on plasma cholesterol levels in rats. J Hypertens 24(1):103–108PubMedCrossRefGoogle Scholar
  114. 114.
    Lu H, Balakrishnan A, Howatt DA, Wu C, Charnigo R, Liau G, Cassis LA, Daugherty A (2012) Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol 165(6):2000–2008. doi: 10.1111/j.1476-5381.2011.01712.x PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lu H, Rateri DL, Feldman DL, Charnigo RJ Jr, Fukamizu A, Ishida J, Oesterling EG, Cassis LA, Daugherty A (2008) Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 118(3):984–993. doi: 10.1172/JCI32970 PubMedPubMedCentralGoogle Scholar
  116. 116.
    Investigators O, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358(15):1547–1559. doi: 10.1056/NEJMoa0801317 CrossRefGoogle Scholar
  117. 117.
    Zulli A, Burrell LM, Widdop RE, Black MJ, Buxton BF, Hare DL (2006) Immunolocalization of ACE2 and AT2 receptors in rabbit atherosclerotic plaques. J Histochem Cytochem 54(2):147–150. doi: 10.1369/jhc.5C6782.2005 PubMedCrossRefGoogle Scholar
  118. 118.
    Thomas MC, Pickering RJ, Tsorotes D, Koitka A, Sheehy K, Bernardi S, Toffoli B, Nguyen-Huu TP, Head GA, Fu Y, Chin-Dusting J, Cooper ME, Tikellis C (2010) Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ Res 107(7):888–897. doi: 10.1161/CIRCRESAHA.110.219279 PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, Tang WB, Wang N, Pan CM, Song HD, Liu CX, Dong B, Zhang Y, Cao Y (2010) Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci U S A 107(36):15886–15891. doi: 10.1073/pnas.1001253107 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE (2010) Vasoprotective and atheroprotective effects of angiotensin (1-7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 30(8):1606–1613. doi: 10.1161/ATVBAHA.110.204453. ATVBAHA.110.204453 [pii]PubMedCrossRefGoogle Scholar
  121. 121.
    Pernomian L, do Prado AF, Gomes MS, Pernomian L, da Silva CH, Gerlach RF, de Oliveira AM (2015) MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Eur J Pharmacol 764:173–188. doi: 10.1016/j.ejphar.2015.07.007 PubMedCrossRefGoogle Scholar
  122. 122.
    Habiyakare B, Alsaadon H, Mathai ML, Hayes A, Zulli A (2014) Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int J Exp Pathol 95(4):290–295. doi: 10.1111/iep.12087 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nehme A, Marcelo P, Nasser R, Kobeissy F, Bricca G, Zibara K (2016) The kinetics of angiotensin-I metabolism in human carotid atheroma: an emerging role for angiotensin (1-7). Vasc Pharmacol 85:50–56. doi: 10.1016/j.vph.2016.08.001 CrossRefGoogle Scholar
  124. 124.
    Clancy P, Seto SW, Koblar SA, Golledge J (2013) Role of the angiotensin converting enzyme 1/angiotensin II/angiotensin receptor 1 axis in interstitial collagenase expression in human carotid atheroma. Atherosclerosis 229(2):331–337. doi: 10.1016/j.atherosclerosis.2013.05.022 PubMedCrossRefGoogle Scholar
  125. 125.
    Clancy P, Koblar SA, Golledge J (2014) Angiotensin receptor 1 blockade reduces secretion of inflammation associated cytokines from cultured human carotid atheroma and vascular cells in association with reduced extracellular signal regulated kinase expression and activation. Atherosclerosis 236(1):108–115. doi: 10.1016/j.atherosclerosis.2014.06.011 PubMedCrossRefGoogle Scholar
  126. 126.
    Clancy P, Koblar S, Golledge J (2016) Involvement of angiotensin II type 1 and 2 receptors in gelatinase regulation in human carotid atheroma in vitro. J Atheroscler Thromb 23(7):773–791. doi: 10.5551/jat.31401 PubMedCrossRefGoogle Scholar
  127. 127.
    Daugherty A, Whitman SC (2003) Quantification of atherosclerosis in mice. Methods Mol Biol 209:293–309PubMedGoogle Scholar
  128. 128.
    Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lenfant M, Corvol P, Menard J (1996) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest 97(3):839–844. doi: 10.1172/JCI118484 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rousseau A, Michaud A, Chauvet MT, Lenfant M, Corvol P (1995) The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem 270(8):3656–3661PubMedCrossRefGoogle Scholar
  130. 130.
    Haznedaroglu IC, Tuncer S, Gursoy M (1996) A local renin-angiotensin system in the bone marrow. Med Hypotheses 46(6):507–510PubMedCrossRefGoogle Scholar
  131. 131.
    Mrug M, Stopka T, Julian BA, Prchal JF, Prchal JT (1997) Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest 100(9):2310–2314. doi: 10.1172/JCI119769 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Haznedaroglu IC, Savas MC, Benekli M (1997) Renin-like activity in leukemic blast cells: an initial clue to a local renin-angiotensin system in the bone marrow. Ann Hematol 75(1–2):69–70PubMedGoogle Scholar
  133. 133.
    Joshi S, Balasubramanian N, Vasam G, Jarajapu YP (2016) Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells. Eur J Pharmacol 774:25–33. doi: 10.1016/j.ejphar.2016.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Thatcher SE, Gupte M, Hatch N, Cassis LA (2012) Deficiency of ACE2 in bone-marrow-derived cells increases expression of TNF-alpha in adipose stromal cells and augments glucose intolerance in obese C57BL/6 mice. Int J Hypertens 2012:762094. doi: 10.1155/2012/762094 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Strawn WB, Richmond RS, Ann Tallant E, Gallagher PE, Ferrario CM (2004) Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br J Haematol 126(1):120–126. doi: 10.1111/j.1365-2141.2004.04998.x PubMedCrossRefGoogle Scholar
  136. 136.
    Gomez RA, Norling LL, Wilfong N, Isakson P, Lynch KR, Hock R, Quesenberry P (1993) Leukocytes synthesize angiotensinogen. Hypertension 21(4):470–475PubMedCrossRefGoogle Scholar
  137. 137.
    Rodgers K, Xiong S, DiZerega GS (2003) Effect of angiotensin II and angiotensin(1-7) on hematopoietic recovery after intravenous chemotherapy. Cancer Chemother Pharmacol 51(2):97–106. doi: 10.1007/s00280-002-0509-4 PubMedGoogle Scholar
  138. 138.
    Rodgers KE, Xiong S, Steer R, diZerega GS (2000) Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells 18(4):287–294. doi: 10.1634/stemcells.18-4-287 PubMedCrossRefGoogle Scholar
  139. 139.
    Gollan F, Richardson E, Goldblatt H (1948) Hypertension in the systemic blood of animals with experimental renal hypertension. J Exp Med 88(4):389–400PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Goldblatt H (1938) Studies on experimental hypertension: vii. The production of the malignant phase of hypertension. J Exp Med 67(5):809–826PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hicks JD, Giltinan P, Pye J (1965) A new method of measuring blood-pressure in mice. Lancet 2(7419):930–932PubMedCrossRefGoogle Scholar
  142. 142.
    Mills PA, Huetteman DA, Brockway BP, Zwiers LM, Gelsema AJ, Schwartz RS, Kramer K (2000) A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry. J Appl Physiol (1985) 88(5):1537–1544Google Scholar
  143. 143.
    Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A 95(26):15496–15501PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL, Rockman HA, Coffman TM (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116(8):2218–2225. doi: 10.1172/JCI16980 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, Jennette JC, O'Brien DA, Smithies O (1995) Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 375(6527):146–148. doi: 10.1038/375146a0 PubMedCrossRefGoogle Scholar
  146. 146.
    Makhanova N, Lee G, Takahashi N, Sequeira Lopez ML, Gomez RA, Kim HS, Smithies O (2006) Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol 290(1):F61–F69. doi: 10.1152/ajprenal.00257.2005 PubMedCrossRefGoogle Scholar
  147. 147.
    Goodwin JE, Zhang J, Geller DS (2008) A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol 19(7):1291–1299. doi: 10.1681/ASN.2007080911 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Marmot MG (1985) Psychosocial factors and blood pressure. Prev Med 14(4):451–465PubMedCrossRefGoogle Scholar
  149. 149.
    Morrison JF, Pickford M (1971) Sex differences in the changes in sympathetic nerve activity when arterial pressure is raised by infusion of angiotensin and noradrenaline. J Physiol 216(1):69–85PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Keys JR, Zhou RH, Harris DM, Druckman CA, Eckhart AD (2005) Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on Gi-mediated signaling. Circulation 112(8):1145–1153. doi: 10.1161/CIRCULATIONAHA.104.531657 PubMedCrossRefGoogle Scholar
  151. 151.
    Xue B, Pamidimukkala J, Hay M (2005) Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol 288(5):H2177–H2184. doi: 10.1152/ajpheart.00969.2004 PubMedCrossRefGoogle Scholar
  152. 152.
    Venegas-Pont M, Sartori-Valinotti JC, Glover PH, Reckelhoff JF, Ryan MJ (2010) Sexual dimorphism in the blood pressure response to angiotensin II in mice after angiotensin-converting enzyme blockade. Am J Hypertens 23(1):92–96. doi: 10.1038/ajh.2009.203 PubMedCrossRefGoogle Scholar
  153. 153.
    Mirabito KM, Hilliard LM, Head GA, Widdop RE, Denton KM (2014) Pressor responsiveness to angiotensin II in female mice is enhanced with age: role of the angiotensin type 2 receptor. Biol Sex Differ 5:13. doi: 10.1186/s13293-014-0013-7 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Gupte M, Thatcher SE, Boustany-Kari CM, Shoemaker R, Yiannikouris F, Zhang X, Karounos M, Cassis LA (2012) Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler Thromb Vasc Biol 32(6):1392–1399. doi: 10.1161/atvbaha.112.248559 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Schneider MP, Wach PF, Durley MK, Pollock JS, Pollock DM (2010) Sex differences in acute ANG II-mediated hemodynamic responses in mice. Am J Physiol Regul Integr Comp Physiol 299(3):R899–R906. doi: 10.1152/ajpregu.00638.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, Arnold AP, Sandberg K (2010) Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension 55(5):1275–1282. doi: 10.1161/HYPERTENSIONAHA.109.144949 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Alsiraj Y, Thatcher SE, Charnigo R, Kuey C, Blalock E, Daugherty A, Cassis LA (2016) Female mice with an XY sex chromosome complement develop severe angiotensin II-induced abdominal aortic aneurysms. Circulation. doi: 10.1161/CIRCULATIONAHA.116.023789 PubMedGoogle Scholar
  158. 158.
    Simon MR, Kamlay MT, Khan M, Melmon K (1989) Angiotensin II binding to human mononuclear cells. Immunopharmacol Immunotoxicol 11(1):63–80. doi: 10.3109/08923978909082143 PubMedCrossRefGoogle Scholar
  159. 159.
    Luft FC (2001) Angiotensin, inflammation, hypertension, and cardiovascular disease. Curr Hypertens Rep 3(1):61–67PubMedCrossRefGoogle Scholar
  160. 160.
    Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Bohm M, Nickenig G (2004) Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res 94(4):534–541. doi: 10.1161/01.RES.0000115557.25127.8D PubMedCrossRefGoogle Scholar
  161. 161.
    Touyz RM (2005) Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 90(4):449–455. doi: 10.1113/expphysiol.2005.030080 PubMedCrossRefGoogle Scholar
  162. 162.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204(10):2449–2460. doi: 10.1084/jem.20070657 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Yusof M, Kamada K, Gaskin FS, Korthuis RJ (2007) Angiotensin II mediates postischemic leukocyte-endothelial interactions: role of calcitonin gene-related peptide. Am J Physiol Heart Circ Physiol 292(6):H3032–H3037. doi: 10.1152/ajpheart.01210.2006 PubMedCrossRefGoogle Scholar
  164. 164.
    Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, Tharaux PL, Coffman TM (2008) Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol 295(2):F515–F524. doi: 10.1152/ajprenal.00527.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, Yamamoto T, Anzai A, Isobe S, Yoshida N, Itoh H, Manabe I, Sekai M, Hamazaki Y, Fukuda K, Minato N, Sano M (2016) Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. doi: 10.1172/JCI88606 PubMedPubMedCentralGoogle Scholar
  166. 166.
    Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, Gordon FJ, Harrison DG (2010) Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res 107(2):263–270. doi: 10.1161/CIRCRESAHA.110.217299 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Bluher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28(7):1304–1310. doi: 10.1161/ATVBAHA.108.165100 PubMedCrossRefGoogle Scholar
  168. 168.
    Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA, Dale BL, Barbaro NR, Foss JD, Kirabo A, Montaniel KR, Norlander AE, Chen W, Sato R, Navar LG, Mallal SA, Madhur MS, Bernstein KE, Harrison DG (2016) CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ Res 118(8):1233–1243. doi: 10.1161/CIRCRESAHA.115.308111 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Feau S, Garcia Z, Arens R, Yagita H, Borst J, Schoenberger SP (2012) The CD4(+) T-cell help signal is transmitted from APC to CD8(+) T-cells via CD27-CD70 interactions. Nat Commun 3:948. doi: 10.1038/ncomms1948 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Vinh A, Amarnath V, Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen SC, Mernaugh RL, Laffer CL, Elijovich F, Davies SS, Moreno H, Madhur MS, Roberts J 2nd, Harrison DG (2014) DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 124(10):4642–4656. doi: 10.1172/JCI74084 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Saleh MA, McMaster WG, Wu J, Norlander AE, Funt SA, Thabet SR, Kirabo A, Xiao L, Chen W, Itani HA, Michell D, Huan T, Zhang Y, Takaki S, Titze J, Levy D, Harrison DG, Madhur MS (2015) Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J Clin Invest 125(3):1189–1202. doi: 10.1172/JCI76327 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM (2012) Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59(5):1069–1078. doi: 10.1161/HYPERTENSIONAHA.111.190223 PubMedCrossRefGoogle Scholar
  173. 173.
    Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A 106(35):14948–14953. doi: 10.1073/pnas.0903958106 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations