Advertisement

sbv IMPROVER: Modern Approach to Systems Biology

  • Svetlana GuryanovaEmail author
  • Anna Guryanova
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1613)

Abstract

The increasing amount and variety of data in biosciences call for innovative methods of visualization, scientific verification, and pathway analysis. Novel approaches to biological networks and research quality control are important because of their role in development of new products, improvement, and acceleration of existing health policies and research for novel ways of solving scientific challenges. One such approach is sbv IMPROVER. It is a platform that uses crowdsourcing and verification to create biological networks with easy public access. It contains 120 networks built in Biological Expression Language (BEL) to interpret data from PubMed articles with high-quality verification available for free on the CBN database. Computable, human-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.

Key words

Systems Biology Network Model Signaling Pathway Crowdsourcing Crowd Verification sbv IMPROVER Biological Expression Language (BEL) 

References

  1. 1.
    Medline/Pubmed resources Detailed Indexing Statistics: 1965–2014. http://www.nlm.nih.gov/bsd/index_stats_comp.html. Accessed 24 Feb 2016
  2. 2.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Yong E (2012) Replication studies: bad copy. Nature 485:298–300. doi: 10.1038/485298a CrossRefPubMedGoogle Scholar
  4. 4.
    Ioannidis JP, Allison DB, Ball CA et al (2009) Repeatability of published microarray gene expression analyses. Nat Genet 41:149–155CrossRefPubMedGoogle Scholar
  5. 5.
    Repetitive flaws (2016) Nature 529:256. http://www.nature.com/news/repetitive-flaws-1.19192
  6. 6.
    Meyer P, Alexopoulos LG, Bonk T et al (2011) Verification of systems biology research in the age of collaborative competition. Nat Biotechnol 29(9):811–815. doi: 10.1038/nbt.1968 CrossRefPubMedGoogle Scholar
  7. 7.
    Peitsch M C (2013) sbv IMPROVER: species translation challenge open to the scientific community for submissions. American Laboratory, http://www.americanlaboratory.com/913-Technical-Articles/138841-sbv-IMPROVER-Species-Translation-Challenge-Open-to-the-Scientific-Community-for-Submissions/. Accessed 24 Feb 2016
  8. 8.
    Meyer P, Hoeng J, Rice JJ et al (2012) Industrial methodology for process verification in research (IMPROVER): toward systems biology verification. Bioinformatics 28(9):1193–1201. doi: 10.1093/bioinformatics/bts116 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boue S, Fields B, Hoeng J et al (2015) Enhancement of COPD biological networks using a web-based collaboration interface. F1000Res 4:32. doi: 10.12688/f1000research.5984.1 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Boue S, Talikka M, Westra JW et al (2015) Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database (Oxford) 2015:bav030. doi: 10.1093/database/bav030 CrossRefGoogle Scholar
  11. 11.
    Younesia E, Hofmann-Apitius M (2013) Biomarker-guided translation of brain imaging into disease pathway models. Sci Rep 3:3375. doi: 10.1038/srep03375 CrossRefGoogle Scholar
  12. 12.
    Ansari S, Binder J, Boue S et al (2013) On crowd-verification of biological networks. Bioinform Biol Insights 7:307–325. doi: 10.4137/BBI.S12932 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoeng J, Deehan R, Pratt D et al (2012) A network-based approach to quantifying the impact of biologically active substances. Drug Discov Today 17(9–10):413–418CrossRefPubMedGoogle Scholar
  14. 14.
    Sewer A, Hoeng J, Deehan R et al (2014) Systems biology approaches for compound testing. In: Hoffmann RD, Gohier A, Pospisil P (eds) Data mining in drug discovery, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Global Health Governance Journal - Seton Hall UniversitySouth OrangeUSA

Personalised recommendations