Advertisement

Pharmacologic Manipulation of Wnt Signaling and Cancer Stem Cells

  • Yann Duchartre
  • Yong-Mi Kim
  • Michael KahnEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1613)

Abstract

Wnt (Wingless-related integration site)-signaling orchestrates self-renewal programs in normal somatic stem cells as well as in cancer stem cells. Aberrant Wnt signaling is associated with a wide variety of malignancies and diseases. Although our understanding has increased tremendously over the past decade, therapeutic targeting of the dysregulated Wnt pathway remains a challenge. Here we review recent preclinical and clinical therapeutic approaches to target the Wnt pathway.

Key words

Wnt signaling Cancer stem cells Drug resistance Self-renewal Clinical trial Somatic stem cells 

Notes

Acknowledgments

YMK was supported by NIH R01CA172896 (YMK). MK is supported by USC Norris Comprehensive Cancer Center Support Grant P30 CA014089, NIH R01CA166161, R21NS074392, R21AI105057 and NIH R01 HL112638. We apologize for the omission of any of our colleagues’ work due to space limitations.

References

  1. 1.
    Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRefGoogle Scholar
  2. 2.
    Liu J et al (2010) Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol 92:367–409PubMedCrossRefGoogle Scholar
  3. 3.
    Merchant AA, Matsui W (2010) Targeting hedgehog–a cancer stem cell pathway. Clin Cancer Res 16(12):3130–3140PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Miki T, Yasuda S-y, Kahn M (2011) Wnt/β-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev Rep 7(4):836–846CrossRefGoogle Scholar
  5. 5.
    Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16(12):3153–3162PubMedCrossRefGoogle Scholar
  6. 6.
    Nakamura T et al (1998) Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells 3(6):395–403PubMedCrossRefGoogle Scholar
  7. 7.
    Kimelman D, Xu W (2006) β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25(57):7482–7491PubMedCrossRefGoogle Scholar
  8. 8.
    Moon RT (2005) Wnt/beta-catenin pathway. Sci Signal 2005(271):cm1Google Scholar
  9. 9.
    Mosimann C, Hausmann G, Basler K (2009) β-Catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10(4):276–286CrossRefPubMedGoogle Scholar
  10. 10.
    Teo J-L, Kahn M (2010) The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 62(12):1149–1155PubMedCrossRefGoogle Scholar
  11. 11.
    Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Dev Cell 5(3):367–377CrossRefPubMedGoogle Scholar
  12. 12.
    Lai S-L, Chien AJ, Moon RT (2009) Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 19(5):532–545PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto S et al (2008) Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 15(1):23–36CrossRefPubMedGoogle Scholar
  14. 14.
    van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214PubMedCrossRefGoogle Scholar
  15. 15.
    Moon RT et al (2004) Wnt and β-catenin signalling: diseases and therapies. Nat Rev Genet 5(9):691–701PubMedCrossRefGoogle Scholar
  16. 16.
    Thrasivoulou C, Millar M, Ahmed A (2013) Activation of intracellular calcium by multiple Wnt ligands and translocation of beta-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/beta-catenin pathways. J Biol Chem 288(50):35651–35659PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Florian MC et al (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chen J et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Driessens G et al (2012) Defining the mode of tumour growth by clonal analysis. Nature 488(7412):527–530PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    McCarthy N (2012) Cancer stem cells: tracing clones. Nat Rev Cancer 12(9):579–579CrossRefPubMedGoogle Scholar
  21. 21.
    Schepers AG et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735PubMedCrossRefGoogle Scholar
  22. 22.
    Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRefGoogle Scholar
  23. 23.
    Fang D (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337PubMedCrossRefGoogle Scholar
  24. 24.
    Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ma S et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7):2542–2556PubMedCrossRefGoogle Scholar
  26. 26.
    Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037PubMedCrossRefGoogle Scholar
  27. 27.
    O'Brien CA, Kreso A, Jamieson CHM (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16(12):3113–3120PubMedCrossRefGoogle Scholar
  28. 28.
    O’Brien CA et al (2006) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110CrossRefPubMedGoogle Scholar
  29. 29.
    Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648PubMedCrossRefGoogle Scholar
  30. 30.
    Jamieson C, Weissman I, Passegue E (2004) Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 6(6):531–533PubMedGoogle Scholar
  31. 31.
    Hussenet T et al (2010) An adult tissue-specific stem cell molecular phenotype is activated in epithelial cancer stem cells and correlated to patient outcome. Cell Cycle 9(2):321–327PubMedCrossRefGoogle Scholar
  32. 32.
    Wicha MS (2012) Migratory gene expression signature predicts poor patient outcome: are cancer stem cells to blame? Breast Cancer Research 14(6):114PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Li L et al (2014) SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell 15(4):431–446PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sadarangani A et al (2015) GLI2 inhibition abrogates human leukemia stem cell dormancy. J Transl Med 13(1):98PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319PubMedCrossRefGoogle Scholar
  36. 36.
    Visvader JE, Lindeman GJ (2010) Stem cells and cancer—the promise and puzzles. Mol Oncol 4(5):369–372PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Vermeulen L et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476PubMedCrossRefGoogle Scholar
  38. 38.
    Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398PubMedCrossRefGoogle Scholar
  39. 39.
    Abrahamsson AE et al (2009) Glycogen synthase kinase 3 missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci 106(10):3925–3929PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Riether C et al (2015) Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling. Sci Transl Med 7(298):298ra119–298ra119CrossRefPubMedGoogle Scholar
  41. 41.
    Schürch C et al (2012) CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression. J Clin Investig 122(2):624–638PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang Y et al (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Giambra V et al (2015) Leukemia stem cells in T-ALL require active Hif1 and Wnt signaling. Blood 125(25):3917–3927PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gang EJ et al (2013) Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene 33(17):2169–2178PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Dandekar S et al (2014) Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. Br J Haematol 167(1):87–99PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Klonisch T et al (2008) Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med 14(10):450–460PubMedCrossRefGoogle Scholar
  47. 47.
    Ahmed MAH et al (2010) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16(5):795–803PubMedCrossRefGoogle Scholar
  48. 48.
    Han J et al (2012) Small interfering RNA-mediated downregulation of beta-catenin inhibits invasion and migration of colon cancer cells in vitro. Med Sci Monit 18(7):BR273–BR280PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shulewitz M et al (2006) Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 25(31):4361–4369CrossRefPubMedGoogle Scholar
  50. 50.
    Wielenga VJM et al (1999) Expression of CD44 in Apc and TcfMutant mice implies regulation by the WNT pathway. Am J Pathol 154(2):515–523PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Schmitt M et al (2014) CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ 22(4):677–689PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ksiazkiewicz M, Markiewicz A, Zaczek AJ (2012) Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 79(4):195–208PubMedCrossRefGoogle Scholar
  53. 53.
    DiMeo TA et al (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69(13):5364–5373PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27(55):6958–6969PubMedCrossRefGoogle Scholar
  55. 55.
    Huels DJ et al (2015) E-cadherin can limit the transforming properties of activating beta-catenin mutations. EMBO J 34(18):2321–2333PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Conacci-Sorrell M et al (2003) Autoregulation of E-cadherin expression by cadherin–cadherin interactions. J Cell Biol 163(4):847–857PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Heuberger J, Birchmeier W (2009) Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2(2):a002915–a002915Google Scholar
  58. 58.
    Brabletz T et al (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin. Cells Tissues Organs 179(1–2):56–65PubMedCrossRefGoogle Scholar
  59. 59.
    Shitashige M et al (2007) Involvement of splicing factor-1 in β-catenin/T-cell factor-4-mediated gene transactivation and pre-MRNA splicing. Gastroenterology 132(3):1039–1054CrossRefPubMedGoogle Scholar
  60. 60.
    Fang L et al (2015) A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res 76(4):891–901PubMedCrossRefGoogle Scholar
  61. 61.
    Zhao Y et al (2015) CBP/catenin antagonist safely eliminates drug-resistant leukemia-initiating cells. Oncogene 35(28):3705–3717PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Heidel FH et al (2012) Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 10(4):412–424PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Radich JP et al (2006) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci 103(8):2794–2799PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Valencia A et al (2009) Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 23(9):1658–1666PubMedCrossRefGoogle Scholar
  65. 65.
    Roman-Gomez J et al (2007) Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 109(8):3462–3469PubMedCrossRefGoogle Scholar
  66. 66.
    Dey N et al (2013) Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 13(1):537PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    DuBois RN, Giardiello FM, Smalley WE (1996) Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin N Am 25(4):773–791CrossRefGoogle Scholar
  68. 68.
    Smalley WE, DuBois RN (1997) Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 39:1–20PubMedCrossRefGoogle Scholar
  69. 69.
    Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94(4):252–266CrossRefPubMedGoogle Scholar
  70. 70.
    Xiao JH et al (2003) Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 278(32):29954–29962PubMedCrossRefGoogle Scholar
  71. 71.
    Pálmer HG et al (2001) Vitamin D 3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J Cell Biol 154(2):369–388PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Venerando A et al (2013) Pyrvinium pamoate does not activate protein kinase CK1, but promotes Akt/PKB down-regulation and GSK3 activation. Biochem J 452(1):131–137PubMedCrossRefGoogle Scholar
  73. 73.
    Boon EMJ et al (2004) Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 90(1):224–229PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gurney A et al (2012) Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci 109(29):11717–11722PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Le PN, McDermott JD, Jimeno A (2015) Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther 146:1–11PubMedCrossRefGoogle Scholar
  76. 76.
    El-Khoueiry A et al (2013) Abstract 2501: a phase I firt-in human study of PRI-724 in patients (pts) with advanced solid tumors. J Clin Oncol 31(15_Supplement):2501Google Scholar
  77. 77.
    Liu J et al (2013) Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci 110(50):20224–20229PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Madan B et al (2015) Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35(17):2197–2207PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Choi MY et al (2015) Pre-clinical specificity and safety of UC-961, a first-in-class monoclonal antibody targeting ROR1. Clin Lymphoma Myeloma Leuk 15:S167–S169PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Safholm A et al (2008) The Wnt-5a-derived hexapeptide foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res 14(20):6556–6563PubMedCrossRefGoogle Scholar
  81. 81.
    Brudvik KW et al (2011) Protein kinase a antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice. Mol Cancer 10(1):149PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Castellone MD (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310(5753):1504–1510PubMedCrossRefGoogle Scholar
  83. 83.
    Jansen SR et al (2014) Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survivalvia β-catenin stabilization. J Cell Mol Med 19(1):210–226PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Grosch S et al (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15(14):2742–2744PubMedGoogle Scholar
  85. 85.
    Maier TJ (2005) Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. FASEB J 19(10):1353–1355PubMedGoogle Scholar
  86. 86.
    Yamazaki R et al (2002) Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS Lett 531(2):278–284PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang Z, Lai G-H, Sirica AE (2004) Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. Hepatology 39(4):1028–1037PubMedCrossRefGoogle Scholar
  88. 88.
    Steinbach G et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342(26):1946–1952PubMedCrossRefGoogle Scholar
  89. 89.
    Yang K (2003) Regional response leading to tumorigenesis after sulindac in small and large intestine of mice with Apc mutations. Carcinogenesis 24(3):605–611PubMedCrossRefGoogle Scholar
  90. 90.
    Baron JA et al (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348(10):891–899PubMedCrossRefGoogle Scholar
  91. 91.
    Lee H-J et al (2009) Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein dishevelled. Angew Chem Int Ed 48(35):6448–6452CrossRefGoogle Scholar
  92. 92.
    Phillips RKS (2002) A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50(6):857–860PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sandler RS et al (2003) A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 348(10):883–890PubMedCrossRefGoogle Scholar
  94. 94.
    Nath N et al (2003) Nitric oxide-donating aspirin inhibits beta-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear beta-catenin-TCF association. Proc Natl Acad Sci 100(22):12584–12589PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Williams JL et al (2001) NO-NSAIDs alter cell kinetics in human colon cancer cell lines more efficiently than traditional NSAIDs. Gastroenterology 120(5):A166CrossRefGoogle Scholar
  96. 96.
    Williams JL et al (2004) NO-donating aspirin inhibits intestinal carcinogenesis in Min (APCMin/+) mice. Biochem Biophys Res Commun 313(3):784–788PubMedCrossRefGoogle Scholar
  97. 97.
    Dharmapuri G et al (2015) Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1–5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways. Leuk Res 39(7):696–701PubMedCrossRefGoogle Scholar
  98. 98.
    Fujii N et al (2007) An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res 67(2):573–579PubMedCrossRefGoogle Scholar
  99. 99.
    Grandy D et al (2009) Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem 284(24):16256–16263PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Shan J et al (2005) Identification of a specific inhibitor of the dishevelled PDZ domain †. Biochemistry 44(47):15495–15503PubMedCrossRefGoogle Scholar
  101. 101.
    Kadowaki T et al (1996) The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in wingless processing. Genes Dev 10(24):3116–3128PubMedCrossRefGoogle Scholar
  102. 102.
    Rios-Esteves J, Resh MD (2013) Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep 4(6):1072–1081PubMedCrossRefGoogle Scholar
  103. 103.
    Shukla S et al (2016) Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep 6:21860PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Dakeng S et al (2011) Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. J Cell Biochem 113(1):49–60CrossRefGoogle Scholar
  105. 105.
    Huang S-MA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620PubMedCrossRefGoogle Scholar
  106. 106.
    Kulak O et al (2015) Disruption of Wnt/β-catenin signaling and telomeric shortening are inextricable consequences of tankyrase inhibition in human cells. Mol Cell Biol 35(14):2425–2435PubMedCentralCrossRefPubMedGoogle Scholar
  107. 107.
    Wu X et al (2016) Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol 48(4):1333–1340PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Thorne CA et al (2010) Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol 6(11):829–836PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ma S et al (2015) SKLB-677, an FLT3 and Wnt/β-catenin signaling inhibitor, displays potent activity in models of FLT3-driven AML. Sci Rep 5:15646PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chen Y et al (2011) Regulation of breast cancer-induced bone lesions by beta-catenin protein signaling. J Biol Chem 286(49):42575–42584PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pacheco-Pinedo EC et al (2011) Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Investig 121(5):1935–1945PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Emami EH et al (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101:12682–12687. Proc Natl Acad Sci U S A 101(47):16707–16707PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    McMillan M, Kahn M (2005) Investigating Wnt signaling: a chemogenomic safari. Drug Discov Today 10(21):1467–1474CrossRefPubMedGoogle Scholar
  114. 114.
    Brembeck FH, Rosário M, Birchmeier W (2006) Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr Opin Genet Dev 16(1):51–59PubMedCrossRefGoogle Scholar
  115. 115.
    Sawa H (2012) Control of cell polarity and asymmetric division in C. elegans. Curr Top Dev Biol 101:55–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Division of Hematology and Oncology, Department of Pediatrics and Pathology, Children’s Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Biochemistry and Molecular BiologyKeck School of Medicine of University of Southern CaliforniaLos AngelesUSA
  3. 3.Norris Comprehensive Cancer Research CenterUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations