Identification of Transcriptional Regulators of Psoriasis from RNA-Seq Experiments

  • Alena Zolotarenko
  • Evgeny Chekalin
  • Rohini Mehta
  • Ancha Baranova
  • Tatiana V. Tatarinova
  • Sergey BruskinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1613)


Psoriasis is a common inflammatory skin disease with complex etiology and chronic progression. To provide novel insights into the molecular mechanisms of regulation of the disease we performed RNA sequencing (RNA-Seq) analysis of 14 pairs of skin samples collected from psoriatic patients. Subsequent pathway analysis and an extraction of transcriptional regulators governing psoriasis-associated pathways was executed using a combination of MetaCore Interactome enrichment tool and cisExpress algorithm, and followed by comparison to a set of previously described psoriasis response elements. A comparative approach has allowed us to identify 42 core transcriptional regulators of the disease associated with inflammation (NFkB, IRF9, JUN, FOS, SRF), activity of T-cells in the psoriatic lesions (STAT6, FOXP3, NFATC2, GATA3, TCF7, RUNX1, etc.), hyperproliferation and migration of keratinocytes (JUN, FOS, NFIB, TFAP2A, TFAP2C), and lipid metabolism (TFAP2, RARA, VDR). After merging the ChIP-seq and RNA-seq data, we conclude that the atypical expression of FOXA1 transcriptional factor is an important player in psoriasis, as it inhibits maturation of naive T cells into this Treg subpopulation (CD4+FOXA1+CD47+CD69+PD-L1(hi)FOXP3−), therefore contributing to the development of psoriatic skin lesions.

Key words

Psoriasis RNA-Seq FOXA1 Transcriptional regulation Inflammation Signaling pathways 


  1. 1.
    Zolotarenko A et al (2016) Integrated computational approach to the analysis of RNA-seq data reveals new transcriptional regulators of psoriasis. Exp Mol Med 48(11):268CrossRefGoogle Scholar
  2. 2.
    Quigley D (2014) RNA-seq permits a closer look at normal skin and psoriasis gene networks. J Invest Dermatol 134(7):1789–1791CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bessarabova M et al (2012) Knowledge-based analysis of proteomics data. BMC Bioinformatics 13(Suppl 16):13Google Scholar
  4. 4.
    Triska M et al (2013) cisExpress: motif detection in DNA sequences. Bioinformatics 29(17):2203–2205CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Troukhan M et al (2009) Genome-wide discovery of cis-elements in promoter sequences using gene expression. OMICS 13(2):139–151CrossRefPubMedGoogle Scholar
  6. 6.
    Liu B et al (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27(3):370–381CrossRefPubMedGoogle Scholar
  7. 7.
    Mayer TZ et al (2013) The p38-MSK1 signaling cascade influences cytokine production through CREB and C/EBP factors in human neutrophils. J Immunol 191(8):4299–4307CrossRefPubMedGoogle Scholar
  8. 8.
    Pallandre JR et al (2007) Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol 179(11):7593–7604CrossRefPubMedGoogle Scholar
  9. 9.
    Li B et al (2014) Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol 134(7):1828–1838CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hodgson A, Wan F (2015) Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition. Mol Microbiol 99(3):439–452CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kulakovskiy IV et al (2013) HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res 41(Database issue):D195–D202CrossRefPubMedGoogle Scholar
  12. 12.
    Mathelier A et al (2014) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42(Database issue):D142–D147CrossRefPubMedGoogle Scholar
  13. 13.
    Jolma A et al (2013) DNA-binding specificities of human transcription factors. Cell 152(1–2):327–339CrossRefPubMedGoogle Scholar
  14. 14.
    Kirsanov DD et al (2013) NPIDB: nucleic acid-protein interaction DataBase. Nucleic Acids Res 41(Database issue):D517–D523CrossRefPubMedGoogle Scholar
  15. 15.
    Swindell WR et al (2011) Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS One 6(4):e18266CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Swindell WR et al (2015) Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med 4:13CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Benjamini Y et al (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284CrossRefGoogle Scholar
  19. 19.
    Benjamini Y, Heller R (2008) Screening for partial conjunction hypotheses. Biometrics 64(4):1215–1222CrossRefPubMedGoogle Scholar
  20. 20.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300Google Scholar
  21. 21.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefPubMedGoogle Scholar
  22. 22.
    Caravaca JM et al (2013) Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev 27(3):251–260CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ni M et al (2013) Amplitude modulation of androgen signaling by c-MYC. Genes Dev 27(7):734–748CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140CrossRefGoogle Scholar
  25. 25.
    Vangala RK et al (2003) The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101(1):270–277CrossRefPubMedGoogle Scholar
  26. 26.
    Iwanaszko M, Kimmel M (2015) NF-kappaB and IRF pathways: cross-regulation on target genes promoter level. BMC Genomics 16:307CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dreos R et al (2013) EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era. Nucleic Acids Res 41(Database issue):D157–D164CrossRefPubMedGoogle Scholar
  28. 28.
    Takahashi H et al (2012) CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. Methods Mol Biol 786:181–200CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Maruyama K, Sugano S (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138(1–2):171–174PubMedGoogle Scholar
  30. 30.
    Tatarinova T et al (2013) NPEST: a nonparametric method and a database for transcription start site prediction. Quant Biol 1(4):261–271CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee PH et al (2014) The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol 192(1):178–188CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang P et al (2014) Analysis of Th1/Th2 response pattern for erythrodermic psoriasis. J Huazhong Univ Sci Technolog Med Sci 34(4):596–601CrossRefPubMedGoogle Scholar
  33. 33.
    Lam EW et al (2013) Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 13(7):482–495CrossRefPubMedGoogle Scholar
  34. 34.
    Keijsers RR et al (2013) Balance of Treg vs. T-helper cells in the transition from symptomless to lesional psoriatic skin. Br J Dermatol 168(6):1294–1302CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Y et al (2014) FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 20(3):272–282CrossRefPubMedGoogle Scholar
  36. 36.
    Hurtado CW, Furuta GT, Kramer RE (2011) Etiology of esophageal food impactions in children. J Pediatr Gastroenterol Nutr 52(1):43–46CrossRefPubMedGoogle Scholar
  37. 37.
    Kim TG et al (2000) The association of psoriasis with human leukocyte antigens in Korean population and the influence of age of onset and sex. J Invest Dermatol 114(2):309–313CrossRefPubMedGoogle Scholar
  38. 38.
    Romanowska M et al (2008) PPARdelta enhances keratinocyte proliferation in psoriasis and induces heparin-binding EGF-like growth factor. J Invest Dermatol 128(1):110–124CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Alena Zolotarenko
    • 1
  • Evgeny Chekalin
    • 1
  • Rohini Mehta
    • 2
  • Ancha Baranova
    • 2
    • 3
    • 4
    • 5
  • Tatiana V. Tatarinova
    • 5
    • 6
    • 7
  • Sergey Bruskin
    • 1
    • 4
    Email author
  1. 1.Laboratory of Functional GenomicsVavilov Institute of General Genetics RASMoscowRussia
  2. 2.The Center of the Study of Chronic Metabolic and Rare Diseases, School of Systems BiologyGeorge Mason UniversityFairfaxUSA
  3. 3.Research Centre for Medical Genetics RAMSMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyMoscowRussia
  5. 5.Atlas Biomed GroupMoscowRussia
  6. 6.Center for Personalized Medicine, Children’s Hospital Los Angeles and Spatial Sciences InstituteUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.A.A. Kharkevich Institute for Information Transmission Problems RASMoscowRussia

Personalised recommendations