Skip to main content

A Weighted SNP Correlation Network Method for Estimating Polygenic Risk Scores

  • Protocol
  • First Online:
Biological Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1613))

Abstract

Polygenic scores are useful for examining the joint associations of genetic markers. However, because traditional methods involve summing weighted allele counts, they may fail to capture the complex nature of biology. Here we describe a network-based method, which we call weighted SNP correlation network analysis (WSCNA), and demonstrate how it could be used to generate meaningful polygenic scores. Using data on human height in a US population of non-Hispanic whites, we illustrate how this method can be used to identify SNP networks from GWAS data, create network-specific polygenic scores, examine network topology to identify hub SNPs, and gain biological insights into complex traits. In our example, we show that this method explains a larger proportion of the variance in human height than traditional polygenic score methods. We also identify hub genes and pathways that have previously been identified as influencing human height. In moving forward, this method may be useful for generating genetic susceptibility measures for other health related traits, examining genetic pleiotropy, identifying at-risk individuals, examining gene score by environmental effects, and gaining a deeper understanding of the underlying biology of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy MI et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    Article  CAS  Google Scholar 

  2. Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405(6788):847–856

    Article  CAS  PubMed  Google Scholar 

  3. Hindorff LA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardy J, Singleton A (2009) Genomewide association studies and human disease. N Engl J Med 360(17):1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9(3):e1003348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wray NR, Goddard ME, Visscher PM (2007) Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 17(10):1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levine ME, Crimmins EM (2015) A genetic network associated with stress resistance, longevity, and cancer in humans. J Gerontol A Biol Sci Med Sci 71(6):703–712

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peterson RE et al (2011) Genetic risk sum score comprised of common polygenic variation is associated with body mass index. Hum Genet 129(2):221–230

    Article  Google Scholar 

  10. Purcell SM et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506(7487):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wray NR, Goddard ME, Visscher PM (2008) Prediction of individual genetic risk of complex disease. Curr Opin Genet Dev 18(3):257–263

    Article  CAS  PubMed  Google Scholar 

  12. Eichler EE et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11(6):446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10(6):392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hemani G, Knott S, Haley C (2013) An evolutionary perspective on epistasis and the missing heritability. PLoS Genet. 9(2):e1003295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghazalpour A et al (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2(8):e130

    Article  PubMed Central  Google Scholar 

  16. Horvath S et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 103(46):17402–17407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langfelder P et al (2012) A systems genetic analysis of high density lipoprotein metabolism and network preservation across mouse models. Biochim Biophys Acta 1821(3):435–447

    Article  CAS  PubMed  Google Scholar 

  18. Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci U S A 103(47):17973–17978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oldham MC, Langfelder P, Horvath S (2012) Network methods for describing sample relationships in genomic datasets: application to Huntington’s disease. BMC Syst Biol 6:63

    Article  PubMed  PubMed Central  Google Scholar 

  20. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 4:Article 17

    Article  Google Scholar 

  22. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet. 2(12):e190

    Article  PubMed  PubMed Central  Google Scholar 

  23. Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5):719–720

    Article  CAS  PubMed  Google Scholar 

  24. Visscher PM (2008) Sizing up human height variation. Nat Genet 40(5):489–490

    Article  CAS  Google Scholar 

  25. Lui JC et al (2012) Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. Hum Mol Genet 21(23):5193–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lango Allen H et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu JZ et al (2010) Genome-wide association study of height and body mass index in Australian twin families. Twin Res Hum Genet 13(2):179–193

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wood AR et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46(11):1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol. 4(8):e1000117

    Article  PubMed  PubMed Central  Google Scholar 

  31. Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis? PLoS One 8(4):e61505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan E. Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Levine, M.E., Langfelder, P., Horvath, S. (2017). A Weighted SNP Correlation Network Method for Estimating Polygenic Risk Scores. In: Tatarinova, T., Nikolsky, Y. (eds) Biological Networks and Pathway Analysis. Methods in Molecular Biology, vol 1613. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7027-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7027-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7025-4

  • Online ISBN: 978-1-4939-7027-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics