Abstract
Oligodendrocyte progenitor cells are the major myelinating cell type of the central nervous system and their dysfunction contributes to a variety of neurological diseases. However, direct access to oligodendrocyte progenitor cells has been challenging. Recently, cellular reprogramming technologies have demonstrated the ability to directly convert one cell type to another. This chapter describes the methods for the generation of induced oligodendrocyte progenitor cells from mouse embryonic fibroblasts by overexpression of defined transcription factors. We also describe pertinent assays used to confirm transgene expression, reprogrammed cell identity, and terminal differentiation to mature oligodendrocytes.
Key words
- Reprogramming
- Immunostaining
- Quantitative PCR
- RNA-seq
- Oligodendrocyte progenitor cells
- Lentivirus
- Mouse embryonic fibroblasts
This is a preview of subscription content, access via your institution.
Buying options



References
Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. doi:10.1038/nrn2480
Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565. doi:10.1016/j.stem.2008.03.020
Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491–495. doi:10.1126/science.1218071
Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12(2):252–264. doi:10.1016/j.stem.2012.12.002
Sim FJ, McClain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29(10):934–941. doi:10.1038/nbt.1972
Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ (2011) Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods 8(11):957–962. doi:10.1038/nmeth.1712
Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31(5):426–433. doi:10.1038/nbt.2561
Chenoweth JG, Tesar PJ (2010) Isolation and maintenance of mouse epiblast stem cells. Methods Mol Biol 636:25–44. doi:10.1007/978-1-60761-691-7_2
Factor DC, Najm FJ, Tesar PJ (2013) Generation and characterization of epiblast stem cells from blastocyst-stage mouse embryos. Methods Mol Biol 1074:1–13. doi:10.1007/978-1-62703-628-3_1
Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Miller TE, Nevin ZS, Kantor C, Sargent A, Quick KL, Schlatzer DM, Tang H, Papoian R, Brimacombe KR, Shen M, Boxer MB, Jadhav A, Robinson AP, Podojil JR, Miller SD, Miller RH, Tesar PJ (2015) Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. doi:10.1038/nature14335
Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, Selleri L, Rudensky A, Josefowicz S, Samstein R, Eichler EE, Orkin SH, Levasseur D, Papayannopoulou T, Chang KH, Skoultchi A, Gosh S, Disteche C, Treuting P, Wang Y, Weiss MJ, Blobel GA, Cao X, Zhong S, Wang T, Good PJ, Lowdon RF, Adams LB, Zhou XQ, Pazin MJ, Feingold EA, Wold B, Taylor J, Mortazavi A, Weissman SM, Stamatoyannopoulos JA, Snyder MP, Guigo R, Gingeras TR, Gilbert DM, Hardison RC, Beer MA, Ren B (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515(7527):355–364. doi:10.1038/nature13992
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Karl, R.T., Lager, A.M., Najm, F.J., Tesar, P.J. (2017). Reprogramming of Mouse Fibroblasts to Induced Oligodendrocyte Progenitor Cells. In: Srivastava, A., Snyder, E., Teng, Y. (eds) Stem Cell Technologies in Neuroscience. Neuromethods, vol 126. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7024-7_5
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7024-7_5
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7022-3
Online ISBN: 978-1-4939-7024-7
eBook Packages: Springer Protocols