Advertisement

Reprogramming of Mouse Fibroblasts to Induced Oligodendrocyte Progenitor Cells

  • Robert T. Karl
  • Angela M. Lager
  • Fadi J. Najm
  • Paul J. Tesar
Protocol
Part of the Neuromethods book series (NM, volume 126)

Abstract

Oligodendrocyte progenitor cells are the major myelinating cell type of the central nervous system and their dysfunction contributes to a variety of neurological diseases. However, direct access to oligodendrocyte progenitor cells has been challenging. Recently, cellular reprogramming technologies have demonstrated the ability to directly convert one cell type to another. This chapter describes the methods for the generation of induced oligodendrocyte progenitor cells from mouse embryonic fibroblasts by overexpression of defined transcription factors. We also describe pertinent assays used to confirm transgene expression, reprogrammed cell identity, and terminal differentiation to mature oligodendrocytes.

Key words

Reprogramming Immunostaining Quantitative PCR RNA-seq Oligodendrocyte progenitor cells Lentivirus Mouse embryonic fibroblasts 

References

  1. 1.
    Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. doi: 10.1038/nrn2480 CrossRefPubMedGoogle Scholar
  2. 2.
    Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565. doi: 10.1016/j.stem.2008.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491–495. doi: 10.1126/science.1218071 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12(2):252–264. doi: 10.1016/j.stem.2012.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sim FJ, McClain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29(10):934–941. doi: 10.1038/nbt.1972 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ (2011) Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods 8(11):957–962. doi: 10.1038/nmeth.1712 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31(5):426–433. doi: 10.1038/nbt.2561 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chenoweth JG, Tesar PJ (2010) Isolation and maintenance of mouse epiblast stem cells. Methods Mol Biol 636:25–44. doi: 10.1007/978-1-60761-691-7_2 CrossRefPubMedGoogle Scholar
  9. 9.
    Factor DC, Najm FJ, Tesar PJ (2013) Generation and characterization of epiblast stem cells from blastocyst-stage mouse embryos. Methods Mol Biol 1074:1–13. doi: 10.1007/978-1-62703-628-3_1 CrossRefPubMedGoogle Scholar
  10. 10.
    Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Miller TE, Nevin ZS, Kantor C, Sargent A, Quick KL, Schlatzer DM, Tang H, Papoian R, Brimacombe KR, Shen M, Boxer MB, Jadhav A, Robinson AP, Podojil JR, Miller SD, Miller RH, Tesar PJ (2015) Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. doi: 10.1038/nature14335 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, Selleri L, Rudensky A, Josefowicz S, Samstein R, Eichler EE, Orkin SH, Levasseur D, Papayannopoulou T, Chang KH, Skoultchi A, Gosh S, Disteche C, Treuting P, Wang Y, Weiss MJ, Blobel GA, Cao X, Zhong S, Wang T, Good PJ, Lowdon RF, Adams LB, Zhou XQ, Pazin MJ, Feingold EA, Wold B, Taylor J, Mortazavi A, Weissman SM, Stamatoyannopoulos JA, Snyder MP, Guigo R, Gingeras TR, Gilbert DM, Hardison RC, Beer MA, Ren B (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515(7527):355–364. doi: 10.1038/nature13992 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Robert T. Karl
    • 1
  • Angela M. Lager
    • 1
  • Fadi J. Najm
    • 1
  • Paul J. Tesar
    • 1
  1. 1.Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations