Standardized Cryopreservation of Stem Cells

Part of the Neuromethods book series (NM, volume 126)


Successful commercial and clinical application of stem cells requires robust and practical cryopreservation protocols. Stem cells, particularly human embryonic stem cells and induced pluripotent stem cells, are notoriously sensitive to cryopreservation, requiring specialized protocols to maintain optimal cell viability and recovery. This chapter reviews the current state of stem cell cryopreservation and provides a clinically relevant, optimized method for controlled rate freezing and thawing of human stem cells that is reliable, inexpensive, and user friendly. This method successfully prepares stem cells for long-term cryogenic storage while ensuring maximal post-thaw cell viability.

Key words

Cryopreservation Stem cells Freezing Thawing Standardization Stem cell culture Stem cell biology 


  1. 1.
    Peterson SE, Loring JF (2014) Genomic instability in pluripotent stem cells: implications for clinical applications. J Biol Chem 289(8):4578–4584CrossRefPubMedGoogle Scholar
  2. 2.
    Martin-Ibanez R et al (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod 23:2744–2754CrossRefPubMedGoogle Scholar
  3. 3.
    Li X et al (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17:1079–1085CrossRefPubMedGoogle Scholar
  4. 4.
    Li X et al (2009) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24:580–589CrossRefPubMedGoogle Scholar
  5. 5.
    Berz D, McCormack EM, Winer ES (2007) Cryopreservation of hematopoietic AU:5 stem cells. Am J Hematol 82:463–472CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chua KJ, Chou SK (2009) On the study of the freeze-thaw thermal process of a biological system. Appl Therm Eng 29:3696–3709CrossRefGoogle Scholar
  7. 7.
    Lund RJ, Narva E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13:732–744CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen S et al (2006) Antibiotics reduce the growth rate and differentiation of embryonic stem cell cultures. Tissue Eng 12(7):2025–2030CrossRefPubMedGoogle Scholar
  9. 9.
    Bajpai R et al (2008) Efficient propagation of single cells: accutase-dissociated human embryonic stem cells. Mol Reprod Dev 75(5):818–827CrossRefPubMedGoogle Scholar
  10. 10.
    Morris C et al (2014) Should the standard dimethyl sulfoxide concentration be reduced? Results of a European group for blood and marrow Transplantation prospective non-interventional study on usage and side effects of dimethyl sulfoxide. Transfusion 54:2514–2522CrossRefPubMedGoogle Scholar
  11. 11.
    Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on the recovery after freezing and thawing. Cryobiology 46:76–87CrossRefPubMedGoogle Scholar
  12. 12.
    Naaldjik Y et al (2012) Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol 12:49CrossRefGoogle Scholar
  13. 13.
    Yokohama WM, Thompson ML, Ehrhardt RO (2012) Cryopreservation and thawing of cells. Current Protoc Immunol Appendix 3:3G. doi: 10.1002/0471142735.ima03gs99 Google Scholar
  14. 14.
    Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686CrossRefPubMedGoogle Scholar
  15. 15.
    Bissoyi A et al (2014) Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank 12(1):23–34CrossRefPubMedGoogle Scholar
  16. 16.
    Norkus M et al (2013) The effect of temperature elevation on cryopreserved mesenchymal stem cells. Cryo Letters 34(4):349–359PubMedGoogle Scholar
  17. 17.
    Foussat A et al (2014) Effective cryopreservation and recovery of human regulatory T-cells. BioProcess Int 12(S3):34–38Google Scholar
  18. 18.
    Stone M., et al. (2015) Maximizing PMBC recovery and viability: a method to optimize and streamline peripheral blood mononuclear cell isolation, Cryopreservation, and thawing. Bioprocess Int epub April 2015Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.MedCision, Inc.San RafaelUSA

Personalised recommendations