Skip to main content

3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels

Part of the Methods in Molecular Biology book series (MIMB,volume 1612)

Abstract

This protocol describes detailed practical procedures for generating 3D intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This advanced 3D microvascular network model incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. The capillary network is first induced via vasculogenesis in a middle tissue chamber and then EC linings along the microfluidic channel on either side serve as artery and vein. The anastomosis is then induced by sprouting angiogenesis to facilitate tight interconnection between the artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological microcirculation transport model of interconnected perfused vessels from artery to vascularized tissue to vein.

Key words

  • 3D microvascular network
  • Microfluidic chip
  • Vasculogenesis
  • EC lining
  • Sprouting angiogenesis
  • Anastomosis
  • Non-physiological leakage
  • Organ-on-a-chip

* These authors contributed equally to this work.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7021-6_24
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7021-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Hardcover Book
USD   159.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee H, Chung M, Jeon NL (2014) Microvasculature: an essential component for organ-on-chip systems. MRS Bull 39(1):51–59

    CrossRef  Google Scholar 

  2. Schimek K, Busek M, Brincker S et al (2013) Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 13(18):3588–3598

    CAS  CrossRef  PubMed  Google Scholar 

  3. Hasan A, Paul A, Vrana NE et al (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35(26):7308–7325

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Esch MB, Post DJ, Shuler ML et al (2011) Characterization of in vitro endothelial linings grown within microfluidic channels. Tissue Eng A 17(23–24):2965–2971

    CAS  CrossRef  Google Scholar 

  5. Bischel LL, Young EWK, Mader BR et al (2013) Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34(5):1471–1477

    CAS  CrossRef  PubMed  Google Scholar 

  6. Booth R, Noh S, Kim H (2014) A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab Chip 14(11):1880–1890

    CAS  CrossRef  PubMed  Google Scholar 

  7. Lee H, Kim S, Chung M et al (2014) A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 91:90–98

    CAS  CrossRef  PubMed  Google Scholar 

  8. Kim S, Lee H, Chung M et al (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500

    CAS  CrossRef  PubMed  Google Scholar 

  9. Yeon JH, Ryu HR, Chung M et al (2012) In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12(16):2815–2822

    CAS  CrossRef  PubMed  Google Scholar 

  10. Vickerman V, Blundo J, Chung S et al (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Young EWK (2013) Advances in microfluidic cell culture systems for studying angiogenesis. J Lab Autom 18(6):427–436

    CrossRef  PubMed  Google Scholar 

  12. Chiu LL, Montgomery M, Liang Y et al (2012) Perfusable branching microvessel bed for vascularization of engineered tissues. Proc Nat Acad Sci U S A 109(50):E3414–E3423

    CAS  CrossRef  Google Scholar 

  13. Whisler JA, Chen MB, Kamm RD (2014) Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng 20(7):543–552

    CAS  CrossRef  Google Scholar 

  14. Diaz-Santana A, Shan M, Stroock AD (2015) Endothelial cell dynamics during anastomosis in vitro. Integr Biol 7(4):454–466

    CrossRef  Google Scholar 

  15. Chan CY, Huang PH, Guo F et al (2013) Accelerating drug discovery via organs-on-chips. Lab Chip 13(24):4697–4710

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    CAS  CrossRef  PubMed  Google Scholar 

  17. Huh D, Torisawa YS, Hamilton GA et al (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164

    CAS  CrossRef  PubMed  Google Scholar 

  18. Hsu YH, Moya ML, Hughes CCW et al (2013) Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13(1):81–89

    CAS  CrossRef  PubMed  Google Scholar 

  19. Hsu YH, Moya ML, Hughes CCW et al (2013) A microfluidic platform for generating large-scale nearly identical human microphysiological system arrays. Lab Chip 13(15):2990–2998

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Moya ML, Hsu YH, Lee AP et al (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19(9):730–737

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Phan DTT, Sobrino A et al (2016) Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16(2):282–290

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Phan DTT, Zhao D et al (2016) An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms. Lab Chip 16(5):868–876

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health: UH3 TR00048 and PQD5 CA180122. C.C.W.H. receives support from the Chao Family Comprehensive Cancer Center (CFCCC) through an NCI Center Grant award P30A062203. X.W. receives support from National Natural Science Foundation of China (No. 31600781). We would also like to thank the permission of The Royal Society of Chemistry (RSC) for reproduction of materials from Lab on a Chip journal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher C. W. Hughes Ph.D. or Abraham P. Lee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, X., Phan, D.T.T., George, S.C., Hughes, C.C.W., Lee, A.P. (2017). 3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols