Skip to main content

High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1612))

Abstract

Three-dimensional (3D) tumor culture miniaturized platforms are of importance to biomimetic model construction and pathophysiological studies. Controllable and high-throughput production of 3D tumors is desirable to make cell-based manipulation dynamic and efficient at micro-scale. Moreover, the 3D culture platform being reusable is convenient to research scholars. In this chapter, we describe a dynamically controlled 3D tumor manipulation and culture method using pneumatic microstructure-based microfluidics, which has potential applications in the fields of tissue engineering, tumor biology, and clinical medicine in a high-throughput way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mehta G, Hsiao AY, Ingram M et al (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fennema E, Rivron N, Rouwkema J et al (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115

    Article  CAS  PubMed  Google Scholar 

  4. Thurber GM, Wittrup KD (2008) Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res 68:3334–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laguinge LM, Lin S, Samara RN et al (2004) Nitrosative stress in rotated three-dimensional colorectal carcinoma cell cultures induces microtubule depolymerization and apoptosis. Cancer Res 64:2643–2648

    Article  CAS  PubMed  Google Scholar 

  6. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  7. Liu W, Li L, Wang X et al (2010) An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically. Lab Chip 10:1717–1724

    Article  CAS  PubMed  Google Scholar 

  8. Gómez-Sjöberg R, Leyrat AA, Pirone DM et al (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563

    Article  PubMed  Google Scholar 

  9. Sung KE, Beebe DJ (2014) Microfluidic 3D models of cancer. Adv Drug Deliv Rev 79–80:68–78

    Article  PubMed  Google Scholar 

  10. Kwapiszewska K, Michalczuk A, Rybka M et al (2014) A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip 14:2096–2104

    Article  CAS  PubMed  Google Scholar 

  11. Yu L, Chen MC, Cheung KC (2010) Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 10:2424–2432

    Article  CAS  PubMed  Google Scholar 

  12. Kim C, Chung S, Kim YE et al (2011) Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab Chip 11:246–252

    Article  CAS  PubMed  Google Scholar 

  13. Alessandri K, Sarangi BR, Gurchenkov VV et al (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci U S A 110:14843–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu W, Li L, Wang J-C et al (2012) Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device. Lab Chip 12:1702–1709

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Xu J, Li T et al (2015) Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Anal Chem 87:9752–9760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31470971, No. 21375106, No. 21175107, No. 31100726), the program of China Scholarships Council (No. 201208610047), the Fundamental Research Funds for the Central Universities (No. 2452015439), and Northwest A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, W., Wang, J. (2017). High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics