Skip to main content

3D Cell Culture: An Introduction

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1612))

Abstract

3D cell culture is an invaluable tool in developmental, cell, and cancer biology. By mimicking crucial features of in vivo environment, including cell–cell and cell–extracellular matrix interactions, 3D cell culture enables proper structural architecture and differentiated function of normal tissues or tumors in vitro. Thereby 3D cell culture realistically models in vivo tissue conditions and processes, and provides in vivo like responses. Since its early days in the 1970s, 3D cell culture has revealed important insights into mechanisms of tissue homeostasis and cancer, and accelerated translational research in cancer biology and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bissell MJ (1981) The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. Int Rev Cytol 70:27–100

    Article  CAS  PubMed  Google Scholar 

  4. Petersen OW, Rønnov-Jessen L, Howlett AR et al (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89(19):9064–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birgersdotter A, Baumforth KR, Porwit A et al (2007) Three-dimensional culturing of the Hodgkin lymphoma cell-line L1236 induces a HL tissue-like gene expression pattern. Leuk Lymphoma 48(10):2042–2053

    Article  CAS  PubMed  Google Scholar 

  6. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. dit Faute MA, Laurent L, Ploton D et al (2002) Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin Exp Metastasis 19(2):161–168

    Article  PubMed  Google Scholar 

  8. Ghosh S, Spagnoli GC, Martin I et al (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204(2):522–531

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Kato M, Shiue L et al (2006) Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res 66(4):1990–1999

    Article  CAS  PubMed  Google Scholar 

  10. Ernst A, Hofmann S, Ahmadi R et al (2009) Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res 15(21):6541–6550

    Article  CAS  PubMed  Google Scholar 

  11. De Witt Hamer PC, Van Tilborg AA, Eijk PP et al (2008) The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27(14):2091–2096

    Article  PubMed  Google Scholar 

  12. Fischbach C, Chen R, Matsumoto T et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4(10):855–860

    Article  CAS  PubMed  Google Scholar 

  13. Friedrich J, Seidel C, Ebner R et al (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324

    Article  CAS  PubMed  Google Scholar 

  14. Stoker AW, Streuli CH, Martins-Green M et al (1990) Designer microenvironments for the analysis of cell and tissue function. Curr Opin Cell Biol 2(5):864–874

    Article  CAS  PubMed  Google Scholar 

  15. Mueller-Klieser W (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273(4 Pt 1):C1109–C1123

    CAS  PubMed  Google Scholar 

  16. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1):14–23

    Article  CAS  PubMed  Google Scholar 

  17. Barcellos-Hoff MH, Aggeler J, Ram TG et al (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105(2):223–235

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14(5):633–639

    Article  CAS  PubMed  Google Scholar 

  19. Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13(5):264–269

    Article  CAS  PubMed  Google Scholar 

  20. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  21. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhuri O, Koshy ST, Branco da Cunha C et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(10):970–978

    Article  CAS  PubMed  Google Scholar 

  23. Linnemann JR, Miura H, Meixner LK et al (2015) Quantification of regenerative potential in primary human mammary epithelial cells. Development 142(18):3239–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mroue R, Bissell MJ (2013) Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 945:221–250

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fell HB, Robinson R (1929) The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro. Biochem J 23:767–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rak-Raszewska A, Hauser PV, Vainio S (2015) Organ in vitro culture: what have we learned about early kidney development? Stem Cells Int 2015:959807

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  PubMed  Google Scholar 

  29. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  PubMed  Google Scholar 

  30. Luni C, Giulitti S, Serena E et al (2016) High-efficiency cellular reprogramming with microfluidics. Nat Methods 13(5):446–452

    Article  CAS  PubMed  Google Scholar 

  31. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  32. Mandrycky C, Wang Z, Kim K et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  CAS  PubMed  Google Scholar 

  33. Graf BW, Boppart SA (2010) Imaging and analysis of three-dimensional cell culture models. In: Papkovsky DB (ed) Live cell imaging: methods and protocols, Methods in molecular biology, vol 591. Springer, New York, pp 211–227

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “Employment of Best Young Scientists for International Cooperation Empowerment” (CZ.1.07/2.3.00/30.0037) cofinanced from European Social Fund and the state budget of the Czech Republic, by the grant “Junior investigator 2015” (Faculty of Medicine, Masaryk University), and by the grant 16-20031Y from Czech Science Foundation (GACR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Koledova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Koledova, Z. (2017). 3D Cell Culture: An Introduction. In: Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 1612. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7021-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7021-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7019-3

  • Online ISBN: 978-1-4939-7021-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics