Advertisement

Plant Genomics pp 123-133 | Cite as

Sample Preparation Protocols for Protein Abundance, Acetylome, and Phosphoproteome Profiling of Plant Tissues

  • Gaoyuan Song
  • Maxwell R. McReynolds
  • Justin W. WalleyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1610)

Abstract

Peptide mass spectrometry is an invaluable technique to globally quantify the proteome. Central to proteome profiling are efficient methods to extract proteins, digest proteins into peptides, and enrich for posttranslationally modified peptides prior to mass spectrometry. In this chapter, we describe methods to extract proteins, process them into peptides, and optionally enrich for phospho- and acetyl-peptides prior to analysis by mass spectrometry.

Key words

Plant proteomics Protein extraction Phosphoproteome Acetylome Mass spectrometry 

References

  1. 1.
    Wilkins MR, Pasquali C, Appel RD et al (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Nat Biotechnol 14:61–65CrossRefGoogle Scholar
  2. 2.
    Graves PR, Haystead TA (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63. doi: 10.1128/MMBR.66.1.39 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–150. doi: 10.1038/nrd1011 CrossRefPubMedGoogle Scholar
  4. 4.
    Ho CS, Lam CWK, Chan MHM et al (2003) Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem 24:3–12Google Scholar
  5. 5.
    Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:3CrossRefGoogle Scholar
  6. 6.
    Syed SU, Maher S, Taylor S (2013) Quadrupole mass filter operation under the influence of magnetic field. J Mass Spectrom 48:1325–1339. doi: 10.1002/jms.3293 CrossRefPubMedGoogle Scholar
  7. 7.
    Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443. doi: 10.1002/jms.856 CrossRefPubMedGoogle Scholar
  8. 8.
    Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162. doi: 10.1021/ac991131p CrossRefPubMedGoogle Scholar
  9. 9.
    Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yeung Y, Nieves E, Angeletti R, Stanley ER (2008) Removal of detergent from protein digests for mass spectrometry analysis. Anal Biochem 382:135–137. doi: 10.1016/j.ab.2008.07.034.Removal CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang W, Scali M, Vignani R et al (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369–2375. doi: 10.1002/elps.200305500 CrossRefPubMedGoogle Scholar
  12. 12.
    Saravanan RS, Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522–2532. doi: 10.1002/pmic.200300789 CrossRefPubMedGoogle Scholar
  13. 13.
    Isaacson T, Damasceno CMB, Saravanan RS et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774. doi: 10.1038/nprot.2006.102 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786. doi: 10.1002/elps.200500722 CrossRefPubMedGoogle Scholar
  15. 15.
    Walley JW, Shen Z, Sartor R et al (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci U S A 110:E4808–E4817. doi: 10.1073/pnas.1319113110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Castellana NE, Shen Z, He Y et al (2013) An automated proteogenomic method utilizes mass spectrometry to reveal novel genes in Zea mays. Mol Cell Proteomics 13(1):157–167. doi: 10.1074/mcp.M113.031260 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Walley J, Xiao Y, Wang J-Z et al (2015) Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum. Proc Natl Acad Sci U S A 112:6212–6217. doi: 10.1073/pnas.1504828112 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Marcon C, Malik WA, Walley JW et al (2015) A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Plant Physiol 168:233–246. doi: 10.1104/pp.15.00138 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Walley JW, Sartor RC, Shen Z et al (2016) Integration of omic networks in a developmental atlas of maize. Science 353(6301):814–818. doi: 10.1126/science.aag1125 CrossRefPubMedGoogle Scholar
  20. 20.
    Glatter T, Ahrné E, Schmidt A (2015) Comparison of different sample preparation protocols reveals lysis buffer-specific extraction biases in gram-negative bacteria and human cells. J Proteome Res 14(11):4472–4485. doi: 10.1021/acs.jproteome.5b00654 CrossRefPubMedGoogle Scholar
  21. 21.
    Kulak NA, Pichler G, Paron I et al (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11:319–324. doi: 10.1038/nmeth.2834 CrossRefPubMedGoogle Scholar
  22. 22.
    Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. doi: 10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  23. 23.
    Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41. doi: 10.1016/j.cbpa.2003.12.009 CrossRefPubMedGoogle Scholar
  24. 24.
    Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi: 10.1126/science.1175371 CrossRefPubMedGoogle Scholar
  25. 25.
    Udeshi ND, Mertins P, Svinkina T, Carr SA (2013) Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc 8:1950–1960. doi: 10.1038/nprot.2013.120 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim W, Bennett EJ, Huttlin EL et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340. doi: 10.1016/j.molcel.2011.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mertins P, Qiao JW, Patel J et al (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10:634–637. doi: 10.1038/nmeth.2518 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. doi: 10.1016/0003-2697(85)90442-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Gaoyuan Song
    • 1
  • Maxwell R. McReynolds
    • 1
  • Justin W. Walley
    • 1
    Email author
  1. 1.Department of Plant Pathology and MicrobiologyIowa State UniversityAmesUSA

Personalised recommendations