Skip to main content

CRISPR/Cas-Mediated In Planta Gene Targeting

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

The recent emergence of the CRISPR/Cas system has boosted the possibilities for precise genome engineering approaches throughout all kingdoms of life. The most common application for plants is targeted mutagenesis, whereby a Cas9-mediated DNA double-strand break (DSB) is repaired by mutagenic nonhomologous end joining (NHEJ). However, the site-specific alteration of a genomic sequence or integration of a transgene relies on the precise repair by homologous recombination (HR) using a suitable donor sequence: this poses a particular challenge in plants, as NHEJ is the preferred repair mechanism for DSBs in somatic tissue. Here, we describe our recently developed in planta gene targeting (ipGT) system, which works via the induction of DSBs by Cas9 to activate the target and the targeting vector at the same time, making it independent of high transformation efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14. doi:10.1093/jxb/eri025

    CAS  PubMed  Google Scholar 

  2. Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93(10):5055–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35(7):1429–1438. doi:10.1007/s00299–016–1981-3

    Article  CAS  PubMed  Google Scholar 

  4. Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78(5):727–741. doi:10.1111/tpj.12338

    Article  CAS  PubMed  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  6. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8. doi:10.1186/s13007–016–0103-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150. doi:10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  11. Fauser F, Roth N, Pacher M et al (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109(19):7535–7540. doi:10.1073/pnas.1202191109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernard P, Couturier M (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226(3):735–745

    Article  CAS  PubMed  Google Scholar 

  13. Koncz C, Kreuzaler F, Kalman Z et al (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and alpha-actin in plant tumors. EMBO J 3(5):1029–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  16. Stemmer M, Thumberger T, Del Sol Keyer M et al (2015) CCTop: an intuitive, flexible and reliable crispr/cas9 target prediction tool. PLoS One 10(4):e0124633. doi:10.1371/journal.pone.0124633

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lei Y, Lu L, Liu H et al (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496. doi:10.1093/mp/ssu044

    Article  CAS  PubMed  Google Scholar 

  18. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. doi:10.1038/nbt.2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. doi:10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Amy Whitbread for the critical reading of the manuscript. Our work on Cas9-mediated genome engineering and GT was funded by the European Research Council (Advanced Grant “COMREC”) as well as the Federal Ministry of Education and Research (PLANT 2030, Pflanzenbiotechnologie fur die Zukunft – TAMOCRO, Grant 0315948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Schiml, S., Fauser, F., Puchta, H. (2017). CRISPR/Cas-Mediated In Planta Gene Targeting. In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics