Applications of X-Ray Micro-Beam for Data Collection

  • Ruslan SanishviliEmail author
  • Robert F. Fischetti
Part of the Methods in Molecular Biology book series (MIMB, volume 1607)


Micro-diffraction tools for macromolecular crystallography, first developed at the end of 1990s and now an integral part of many synchrotron beamlines, enable some of the experiments which were not feasible just a decade or so ago. These include data collection from very small samples, just a few micrometers in size; from larger, but severely inhomogeneous samples; and from samples which are optically invisible. Improved micro-diffraction tools led to improved signal-to-noise ratio, to mitigation of radiation damage in some cases, and to better-designed diffraction experiments. Small, micron-scale beams can be attained in different ways and knowing the details of the implementation is important in order to design the diffraction experiment properly. Similarly, precision, reproducibility and stability of the goniometry, and caveats of detection systems need to be taken into account. Lastly, to make micro-diffraction widely applicable, the sophistication, robustness, and user-friendliness of these tools are just as important as the technical capabilities.

Key words

Micro-beam Micro-diffraction Micro-focus Raster Small crystals Inhomogeneous crystals Signal-to-noise Radiation damage Multi-crystal data collection 


  1. 1.
    Smith JL, Fischetti RF, Yamamoto M (2012) Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Riekel C (2004) Recent developments in micro-diffraction on protein crystals. J Synchrotron Radiat 11:4–6CrossRefPubMedGoogle Scholar
  3. 3.
    Cusack S, Belrhali H, Bram A et al (1998) Small is beautiful: protein micro-crystallography. Nat Struct Biol 5(Suppl):634–637CrossRefPubMedGoogle Scholar
  4. 4.
    Perrakis A, Cipriani F, Castagna JC et al (1999) Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. Acta Crystallogr D Biol Crystallogr 55:1765–1770CrossRefPubMedGoogle Scholar
  5. 5.
    Evans G, Alianelli L, Burt M et al (2007) Diamond beamline I24: a flexible instrument for macromolecular micro-crystallography. Synchrotron Radiat Instrum 879:836–839CrossRefGoogle Scholar
  6. 6.
    Igarashi N, Ikuta K, Miyoshi T et al (2008) X-ray beam stabilization at BL-17A, the protein microcrystallography beamline of the photon factory. J Synchrotron Radiat 15:292–295CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fischetti RF, Xu S, Yoder DW et al (2009) Mini-beam collimator enables microcrystallography experiments on standard beamlines. J Synchrotron Radiat 16:217–225CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118CrossRefPubMedGoogle Scholar
  9. 9.
    Yamamoto M, Hirata K, Hikima T et al (2010) Protein micro-crystallography with a new micro-beam beamline. Yakugaku Zasshi 130:641–648CrossRefPubMedGoogle Scholar
  10. 10.
    Kawano Y, Shimizu N, Baba S et al (2009) Present status of SPring-8 macromolecular crystallography beamlines. In: Sri 2009: the 10th international conference on synchrotron radiation instrumentation, vol 1234, pp 359–362Google Scholar
  11. 11.
    de Sanctis D, Beteva A, Caserotto H et al (2012) ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J Synchrotron Radiat 19:455–461CrossRefPubMedGoogle Scholar
  12. 12.
    Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387CrossRefPubMedGoogle Scholar
  14. 14.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Coulibaly F, Chiu E, Ikeda K et al (2007) The molecular organization of cypovirus polyhedra. Nature 446:97–101CrossRefPubMedGoogle Scholar
  16. 16.
    Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rasmussen SG, DeVree BT, Zou Y et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hirano Y, Takeda K, Miki K (2016) Charge-density analysis of an iron-sulfur protein at an ultra-high resolution of 0.48 Å. Nature 534:281–284PubMedGoogle Scholar
  20. 20.
    Sanishvili R, Nagarajan V, Yoder D et al (2008) A 7 μm mini-beam improves diffraction data from small or imperfect crystals of macromolecules. Acta Crystallogr D Biol Crystallogr 64:425–435CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dauter Z (1999) Data-collection strategies. Acta Crystallogr D Biol Crystallogr 55:1703–1717CrossRefPubMedGoogle Scholar
  22. 22.
    Cipriani F, Felisaz F, Lavault B et al (2007) Quickly getting the best data from your macromolecular crystals with a new generation of beamline instruments. Synchrotron Radiat Instrum 879:1928–1931CrossRefGoogle Scholar
  23. 23.
    Evans G, Axford D, Waterman D et al (2011) Macromolecular microcrystallography. Crystallogr Rev 17:105–142CrossRefGoogle Scholar
  24. 24.
    Davis MF, Groter C, Kay HF (1968) On choosing off-line automatic X-ray diffractometers. J Appl Crystallogr 1:209–217CrossRefGoogle Scholar
  25. 25.
    Fuchs MR, Pradervand C, Thominet V et al (2014) D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss light source. J Synchrotron Radiat 21:340–351CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Evans G, Axford D, Owen RL (2011) The design of macromolecular crystallography diffraction experiments. Acta Crystallogr D Biol Crystallogr 67:261–270CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hilgart MC, Sanishvili R, Ogata CM et al (2011) Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J Synchrotron Radiat 18:717–722CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aishima J, Owen RL, Axford D et al (2010) High-speed crystal detection and characterization using a fast-readout detector. Acta Crystallogr D Biol Crystallogr 66:1032–1035CrossRefPubMedGoogle Scholar
  30. 30.
    Riekel C (2000) New avenues in X-ray microbeam experiments. Rep Prog Phys 63:233–262CrossRefGoogle Scholar
  31. 31.
    Song J, Mathew D, Jacob SA et al (2007) Diffraction-based automated crystal centering. J Synchrotron Radiat 14:191–195CrossRefPubMedGoogle Scholar
  32. 32.
    Zander U, Bourenkov G, Popov AN et al (2015) MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr D Biol Crystallogr 71:2328–2343CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bowler MW, Guijarro M, Petitdemange S et al (2010) Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. Acta Crystallogr D Biol Crystallogr 66:855–864CrossRefPubMedGoogle Scholar
  34. 34.
    Lee H, Le HV, Wu R et al (2015) Mechanism of inactivation of GABA aminotransferase by (E)- and (Z)-(1S,3S)-3-amino-4-fluoromethylenyl-1-cyclopentanoic acid. ACS Chem Biol 10:2087–2098CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gehret JJ, Gu L, Gerwick WH et al (2011) Terminal alkene formation by the thioesterase of curacin a biosynthesis: structure of a decarboxylating thioesterase. J Biol Chem 286:14445–14454CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Teng TY, Moffat K (2000) Primary radiation damage of protein crystals by an intense synchrotron X-ray beam. J Synchrotron Radiat 7:313–317CrossRefPubMedGoogle Scholar
  37. 37.
    Nave C, Hill MA (2005) Will reduced radiation damage occur with very small crystals? J Synchrotron Radiat 12:299–303CrossRefPubMedGoogle Scholar
  38. 38.
    Garman EF (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr D Biol Crystallogr 66:339–351CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sanishvili R, Yoder DW, Pothineni SB et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108:6127–6132CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Finfrock YZ, Stern EA, Yacoby Y et al (2010) Spatial dependence and mitigation of radiation damage by a line-focus mini-beam. Acta Crystallogr D Biol Crystallogr 66:1287–1294CrossRefPubMedGoogle Scholar
  41. 41.
    Cowan JA, Nave C (2008) The optimum conditions to collect X-ray data from very small samples. J Synchrotron Radiat 15:458–462CrossRefPubMedGoogle Scholar
  42. 42.
    Mei Y, Su M, Sanishvili R et al (2016) Identification of BECN1 and ATG14 coiled-coil interface residues important for starvation-induced autophagy. Biochemistry 55:4239–4253CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lechtenberg BC, Rajput A, Sanishvili R et al (2016) Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529:546–550CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Axford D, Ji X, Stuart DI et al (2014) In cellulo structure determination of a novel cypovirus polyhedrin. Acta Crystallogr D Biol Crystallogr 70:1435–1441CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Akey DL, Brown WC, Konwerski JR et al (2014) Use of massively multiple merged data for low-resolution S-SAD phasing and refinement of flavivirus NS1. Acta Crystallogr D Biol Crystallogr 70:2719–2729CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ravelli RBG, Sweet RM, Skinner JM et al (1997) STRATEGY: a program to optimize the starting spindle angle and scan range for X-ray data collection. J Appl Crystallogr 30:551–554CrossRefGoogle Scholar
  48. 48.
    Pothineni SB, Venugopalan N, Ogata CM et al (2014) Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system. J Appl Crystallogr 47:1992–1999CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Paithankar KS, Garman EF (2010) Know your dose: RADDOSE. Acta Crystallogr D Biol Crystallogr 66:381–388CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Paithankar KS, Owen RL, Garman EF (2009) Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J Synchrotron Radiat 16:152–162CrossRefPubMedGoogle Scholar
  51. 51.
    Foadi J, Aller P, Alguel Y et al (2013) Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69:1617–1632CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Terwilliger TC, Bunkoczi G, Hung LW et al (2016) Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr D Biol Crystallogr 72:359–374CrossRefGoogle Scholar
  53. 53.
    Akey DL, Terwilliger TC, Smith JL (2016) Efficient merging of data from multiple samples for determination of anomalous substructure. Acta Crystallogr D Biol Crystallogr 72:296–302CrossRefGoogle Scholar
  54. 54.
    Wagner A, Duman R, Stevens B et al (2013) Microcrystal manipulation with laser tweezers. Acta Crystallogr D Biol Crystallogr 69:1297–1302CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cole K, Roessler CG, Mule EA et al (2014) A linear relationship between crystal size and fragment binding time observed crystallographically: implications for fragment library screening using acoustic droplet ejection. PLoS One 9:e101036CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Teplitsky E, Joshi K, Ericson DL et al (2015) High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. J Struct Biol 191:49–58CrossRefPubMedGoogle Scholar
  57. 57.
    Soares AS, Engel MA, Stearns R et al (2011) Acoustically mounted microcrystals yield high-resolution X-ray structures. Biochemistry 50:4399–4401CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fakhri AA, Kant P, Singh G et al (2015) An analytical study of double bend achromat lattice. Rev Sci Instrum 86:033304CrossRefPubMedGoogle Scholar
  59. 59.
    Einfeld D, Plesko M, Schaper J (2014) First multi-bend achromat lattice consideration. J Synchrotron Radiat 21:856–861CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.GM/CA@APS, Advanced Photon SourceArgonne National LaboratoryArgonneUSA

Personalised recommendations