Skip to main content

Structure Refinement at Atomic Resolution

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

X-Ray diffraction data at atomic resolution, i.e., beyond 1.2 Å, provide the most detailed and reliable information we have about the structure of macromolecules, which is especially important for validating new discoveries and resolving subtle issues of molecular mechanisms. Refinement at atomic resolution allows reliable interpretation of static disorder and solvent structure, as well as modeling of anisotropic atomic vibrations and even of H atoms. Stereochemical restraints can be relaxed or removed, providing unbiased information about macromolecular stereochemistry, which in turn can be used to define improved conformation-dependent libraries, and the surplus of data allows estimation of least-squares uncertainties in the derived parameters. At ultrahigh resolution it is possible to study charge density distribution by multipolar refinement of electrons in non-spherical orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheldrick GM (1990) Phase Annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473

    Article  Google Scholar 

  2. Bricogne G, Morris RJ (2003) Sheldrick’s 1.2 Å rule and beyond. Acta Crystallogr D Biol Crystallogr 59:615–617

    Article  PubMed  Google Scholar 

  3. Evans P (2012) Resolving some old problems in protein crystallography. Science 336:986–987

    Article  CAS  PubMed  Google Scholar 

  4. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaguine AA, Richelle J, Wodak SJ (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D Biol Crystallogr 55:191–205

    Article  CAS  PubMed  Google Scholar 

  6. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  7. Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–274

    Article  CAS  PubMed  Google Scholar 

  8. Weiss M, Hilgenfeld R (1997) On the use of the merging R factor as a quality indicator for X-ray data. J Appl Cryst 30:203–205

    Article  CAS  Google Scholar 

  9. Weiss M (2001) Global indicators of X-ray data quality. J Appl Cryst 34:130–135

    Article  CAS  Google Scholar 

  10. Merritt EA (1999) Expanding the model: anisotropic displacement parameters in protein structure refinement. Acta Crystallogr D Biol Crystallogr 55:1109–1117

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton WC (1965) Significance tests on the crystallographic R factor. Acta Crystallogr 18:502–510

    Article  CAS  Google Scholar 

  12. Bacchi A, Lamzin VS, Wilson KS (1996) A self-validation technique for protein structure refinement: the extended Hamilton test. Acta Crystallogr D Biol Crystallogr 52:641–646

    Article  CAS  PubMed  Google Scholar 

  13. Merritt EA (2012) To B or not to B: a question of resolution? Acta Crystallogr D Biol Crystallogr 68:468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brzezinski K, Brzuszkiewicz A, Dauter M et al (2011) High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55 Å. Nucleic Acids Res 39:6238–6248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  16. Engh RA, Huber R (2001) Structure quality and target parameters. In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol F. Kluwer Academic, Dordrecht, pp 382–392

    Google Scholar 

  17. Jaskolski M, Gilski M, Dauter Z et al (2007) Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? Acta Crystallogr D Biol Crystallogr 63:611–620

    Article  CAS  PubMed  Google Scholar 

  18. Parkinson G, Vojtechovsky J, Clowney L et al (1996) New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr 52:57–64

    Article  CAS  PubMed  Google Scholar 

  19. Clowney L, Jain SC, Srinivasan AR, Westbrook J et al (1996) Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc 118:509–518

    Article  CAS  Google Scholar 

  20. Gelbin A, Schneider B, Clowney L et al (1996) Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc 118:519–529

    Article  CAS  Google Scholar 

  21. Addlagatta A, Czapinska H, Krzywda S et al (2001) Ultrahigh-resolution structure of a BPTI mutant. Acta Crystallogr D Biol Crystallogr 57:649–663

    Article  CAS  PubMed  Google Scholar 

  22. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  PubMed  Google Scholar 

  23. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malinska M, Dauter M, Kowiel M et al (2015) Protonation and geometry of histidine rings. Acta Crystallogr D Biol Crystallogr 71:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berkholz DS, Shapovalov MV, Dunbrack RLJ et al (2009) Conformation dependence of backbone geometry in proteins. Structure 17:1316–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tronrud DE, Karplus PA (2011) A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution. Acta Crystallogr D Biol Crystallogr 67:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moriarty NW, Tronrud DE, Adams PD et al (2014) Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement. FEBS J 281:4061–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moriarty NW, Tronrud DE, Adams PD et al (2015) A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream. Acta Crystallogr D Biol Crystallogr 72:176–179

    Article  Google Scholar 

  29. Czapinska H, Otlewski J, Krzywda S et al (2000) High resolution structure of bovine pancreatic trypsin inhibitor with altered binding loop sequence. J Mol Biol 295:1237–1249

    Article  CAS  PubMed  Google Scholar 

  30. Howard ER, Sanishvili R, Cachau RE et al (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 Å. Proteins 55:792–804

    Article  CAS  PubMed  Google Scholar 

  31. Allen FH (1986) A systematic pairwise comparison of geometric parameters obtained by X-ray and neutron diffraction. Acta Crystallogr B 42:515–522

    Article  Google Scholar 

  32. Olovsson I, Jaskolski M (1986) Reaction coordinate for the proton transfer in some hydrogen bonds. Pol J Chem 60:759–766

    CAS  Google Scholar 

  33. Lamzin VS, Wilson KS (1997) Automated refinement for protein crystallography. Methods Enzymol 277:269–305

    Article  CAS  PubMed  Google Scholar 

  34. Read RJ (1997) Model phases: probabilities and bias. Methods Enzymol 277:110–128

    Article  CAS  PubMed  Google Scholar 

  35. Brünger AT (1992) Free R-value: a novel statistical quantity for assessing the accuracy of the crystal structures. Nature 335:472–475

    Article  Google Scholar 

  36. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34:909–921

    Article  Google Scholar 

  37. Zarychta B, Pichon-Pesme V, Guillot B et al (2007) On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Crystallogr A 63:108–125

    Article  CAS  PubMed  Google Scholar 

  38. Koritsanszky T, Volkov A, Coppens P (2002) Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the nultipole formalism. Acta Crystallogr A 58:464–472

    Article  PubMed  Google Scholar 

  39. Guillot B, Jelsch C, Podjarny A et al (2008) Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case. Acta Crystallogr D Biol Crystallogr 64:567–588

    Article  CAS  PubMed  Google Scholar 

  40. Jelsch C, Teeter MM, Lamzin V et al (2000) Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. Proc Natl Acad Sci U S A 97:3171–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt A, Teeter M, Weckert E et al (2011) Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Afonine PV, Grosse-Kunstleve RW, Adams PD et al (2007) On macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallogr D Biol Crystallogr 63:1194–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wlodawer A, Minor W, Dauter Z et al (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  CAS  PubMed  Google Scholar 

  44. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  45. Dauter Z, Lamzin V, Wilson K (1997) The benefits of atomic resolution. Curr Opin Struct Biol 7:681–688

    Article  CAS  PubMed  Google Scholar 

  46. Thaimattam R, Jaskolski M (2004) Synchrotron radiation in atomic-resolution studies of protein structure. J Alloys Compd 362:12–20

    Article  CAS  Google Scholar 

  47. Jaskolski M (2013) High resolution macromolecular crystallography. In: Read R, Urzhumtsev AG, Lunin VY (eds) Advancing methods for biomolecular crystallography. Springer, New York, pp 259–275

    Chapter  Google Scholar 

  48. Wlodawer A, Li M, Gustchina A et al (2001) Inhibitor complexes of the Pseudomonas serine-carboxyl proteinase. Biochemistry 40:15602–15611

    Article  CAS  PubMed  Google Scholar 

  49. Murshudov GN, Skubak P, Lebedev AA et al (2011) Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adams PD, Afonine PV, Bunkóczi B et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jelsch C, Guillot B, Lagoutte A et al (2005) Advances in protein and small-molecule charge-density refinement methods using MoPro. J Appl Cryst 38:38–54

    Article  Google Scholar 

  52. Rosenbaum G, Ginell SL, Chen JC (2015) Energy optimization of a regular macromolecular crystallography beamline for ultra-high-resolution crystallography. J Synchrotron Radiat 22:172–174

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Dauter M, Alkire R et al (2007) Triclinic lysozyme at 0.65 Å resolution. Acta Crystallogr D Biol Crystallogr 63:1254–1268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Jaskolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jaskolski, M. (2017). Structure Refinement at Atomic Resolution. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics