Skip to main content

Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rupp B (2009) Biomolecular crystallography. In: Principles, practice, and application to structural biology. Garland Science, New York

    Google Scholar 

  2. Drenth J (1994) Principles of protein X-ray crystallography. Springer, New York

    Book  Google Scholar 

  3. Bijvoet JM (1945) Phase determination in direct Fourier synthesis of crystal structures. Koninkl Nederland Akad Wetenschap Proc 52:313–314

    Google Scholar 

  4. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  5. Thorn A. Lecture notes “Crystallographic Masterclass”, Diamond Lightsource/University of Oxford. http://shelx.uni-ac.gwdg.de/~athorn

  6. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gruene T (2008) mtz2sca and mtz2hkl: facilitated transition from CCP4 to the SHELX program suite. J Appl Crystallogr 41:217–218

    Article  Google Scholar 

  8. Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 67:282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liz Potterton L (2012) Introducing CCP4i2. CCP4 Newsletter 48

    Google Scholar 

  10. Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 37:843–844

    Article  CAS  Google Scholar 

  11. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62:859–866

    Article  PubMed  Google Scholar 

  12. Emsley P, Lohkamp B, Scott W, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorn A, Sheldrick GM (2011) ANODE: anomalous and heavy-atom density calculation. J Appl Crystallogr 44:1285–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terwilliger TC, Bunkóczi G, Hung L-W, Zwart PH, Smith JL, Akey DL, Adams PD (2016) Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr D Biol Crystallogr 72:359–374

    Article  CAS  Google Scholar 

  15. Thorn A (2011) Practical approaches to macromolecular X-ray structure determination. Dissertation, Georg-August University Goettingen. http://hdl.handle.net/11858/00-1735-0000-0006-B072-8

  16. Yao J-X (1981) On the application of phase relationships to complex structures. XVIII. RANTAN—random MULTAN. Acta Cryst A37:642–644

    Article  Google Scholar 

  17. Usón I, Sheldrick GM (1999) Advances in direct methods for protein crystallography. Curr Opin Struct Biol 9:643–648

    Article  PubMed  Google Scholar 

  18. Bricogne G, Vonrhein C, Flensburg C, Schiltz M, Paciorek W (2003) Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr D Biol Crystallogr 59:2023–2030

    Article  CAS  PubMed  Google Scholar 

  19. McCoy AJ, Storoni LC, Read RJ (2004) Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr D Biol Crystallogr 60:1220–1228

    Article  PubMed  Google Scholar 

  20. Wang BC (1985) Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115:90–112

    Article  CAS  PubMed  Google Scholar 

  21. Lunin VY (1988) Use of the information on electron density modification technique for phase refinement and extension of macromolecules. Acta Crystallogr A 44:144–150

    Article  Google Scholar 

  22. Abrahams JP (1997) Acta Crystallogr D Biol Crystallogr 53:371–376

    Article  CAS  PubMed  Google Scholar 

  23. Thorn A, Sheldrick GM (2013) Extending molecular-replacement solutions with SHELXE. Acta Crystallogr D Biol Crystallogr 69:2251–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheldrick GM (2002) Macromolecular phasing with SHELXE. Z Kristallogr 217:644–650

    CAS  Google Scholar 

  25. Schuermann JP, Tanner JJ (2003) MRSAD: using anomalous dispersion from S atoms collected at Cu K[alpha] wavelength in molecular-replacement structure determination. Acta Crystallogr D Biol Crystallogr 59:1731–1736

    Article  PubMed  Google Scholar 

  26. Galej WP, Oubridge C, Newman AJ, Nagai K (2013) Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493:638–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58:1772–1779

    Article  PubMed  Google Scholar 

  28. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72–82

    Article  PubMed  Google Scholar 

  29. Liu Q, Dahmane T, Zhang Z, Assur Z, Brasch J, Shapiro L, Mancia F, Hendrickson WA (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giordano R, Leal RMF, Bourenkov GP, McSweeney S, Popov AN (2012) The application of hierarchical cluster analysis to the selection of isomorphous crystals. Acta Crystallogr D Biol Crystallogr 68:649–658

    Article  CAS  PubMed  Google Scholar 

  31. Foadi J, Aller P, Alguel Y, Cameron A, Axford D, Owen RL, Armour W, Waterman DG, Iwata S, Evans G (2013) Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69:1617–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terwilliger TC, Bunkoczi G, Hung L-W, Zwart PH, Smith JL, Akey DL, Adams PD (2015) Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Acta Crystallogr D Biol Crystallogr 72:346–358

    Article  Google Scholar 

  33. Beck T, Krasauskas A, Gruene T, Sheldrick GM (2008) A magic triangle for experimental phasing of macromolecules. Acta Crystallogr D Biol Crystallogr 64:1179–1182

    Article  CAS  PubMed  Google Scholar 

  34. Dall’Antonia F, Schneider TR (2006) SITCOM: a program for comparing sites in macromolecular substructures. J Appl Crystallogr 39:618–619

    Article  Google Scholar 

  35. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caliandro R, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Siliqi D (2007) Advances in the free lunch method. J Appl Crystallogr 40:931–937

    Article  CAS  Google Scholar 

  37. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodríguez DD, Grosse C, Himmel S, González C, de Ilarduya IM, Becker S, Sheldrick GM, Usón I (2009) Crystallographic ab initio protein structure solution below atomic resolution. Nat Methods 6:651–653

    Article  PubMed  Google Scholar 

  39. Bibby J, Keegan R, Rigden DJ, Wynn M, Mayans O (2012) AMPLE—using ab initio modelling to tackle difficult molecular replacement cases. CCP4 Newslett 48

    Google Scholar 

  40. Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr D Biol Crystallogr 61:449–457

    Article  PubMed  Google Scholar 

  41. Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH, Hung LW (2009) Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D Biol Crystallogr 65:582–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cowtan K (2006) The buccaneer software for automated model building. Acta Crystallogr D Biol Crystallogr 62:1002–1011

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Airlie McCoy and George M. Sheldrick for fruitful discussions. This work was supported by the European Union FP7 Marie-Curie IEF grant “SOUPINMYCRYSTAL” (grant No. 330033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Thorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Thorn, A. (2017). Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics