Skip to main content

Processing of XFEL Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

The introduction of the X-ray laser to crystallography, and its impact on the types of crystallographic experiments being performed as described in the previous chapter, has meant that new data processing strategies had to be found. While some XFEL crystallography experiments approach the conventional methods quite closely, even those are not without special considerations relating to data processing. Serial femtosecond crystallography (SFX) introduces several additional problems, many of which have been solved recently, and there has been great progress towards resolving the remaining ones. Recent developments into the use of continuous scattering between the Bragg peaks will need even greater changes to the conventional data processing methods. This chapter describes the special characteristics of XFEL data and introduces the range of processing methods which are currently under development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Spence JCH, Doak RB (2004) Single molecule diffraction. Phys Rev Lett 92:198102

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro DA, Chapman HN, DePonte D et al (2008) Powder diffraction from a continuous microjet of submicrometer protein crystals. J Synchrotron Rad 15:593–599

    Article  CAS  Google Scholar 

  3. DePonte DP, Weierstall U, Schmidt K et al (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D41:195505

    Google Scholar 

  4. Hunter MS, Segelke B, Messerschmidt M et al (2014) Fixed-target protein serial microcrystallography with an X-ray free electron laser. Sci Rep 4:6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gati C, Bourenkov G, Klinge M et al (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nogly P, James D, Wang D et al (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stellato F, Oberthür D, Liang M et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eriksson M, van der Veen JF, Quitmann C (2014) Diffraction-limited storage rings—a window to the science of tomorrow. J Synchrotron Rad 21:837–842

    Article  CAS  Google Scholar 

  9. Cohen AE, Soltis SM, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736

    Article  CAS  PubMed  Google Scholar 

  11. Andreasson J, Martin AV, Liang M et al (2013) Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Opt Express 22:2497–2510

    Article  Google Scholar 

  12. Park J, Joti Y, Ishikawa T et al (2013) Monte Carlo study for optimal conditions in single-shot imaging with femtosecond X-ray laser pulses. Appl Phys Lett 103:264101

    Article  Google Scholar 

  13. Powell HR, Johnson O, Leslie AGW (2013) Acta Crystallogr D Biol Crystallogr 69:1195–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duisenberg AJM (1992) Indexing in single-crystal diffractometry with an obstinate list of reflections. J Appl Crystallogr 25:92–96

    Article  CAS  Google Scholar 

  15. Kabsch W (1988) Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J Appl Crystallogr 21:916–924

    Article  CAS  Google Scholar 

  16. Rossmann MG, van Beek CG (1999) Data processing. Acta Crystallogr D Biol Crystallogr 55:1631–1640

    Article  CAS  PubMed  Google Scholar 

  17. Weidenspointner G, Epp S, Hartmann A et al (2011) Practical experience from operating the imaging pnCCD detectors of the CAMP instrument at LCLS. Proc SPIE 8078:80780U

    Article  Google Scholar 

  18. Strüder L, Epp S, Rolles D et al (2010) Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl Instrum Methods Phys Res A 614:483–496

    Article  Google Scholar 

  19. Philipp HT, Koerner LJ, Hromalik MS et al (2010) Femtosecond radiation experiment detector for X-ray free-electron laser (XFEL) coherent X-ray imaging. IEEE Trans Nucl Sci 57:3795–3799

    CAS  Google Scholar 

  20. Kameshima T, Ono S, Kudo T et al (2014) Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev Sci Instrum 85:033110

    Article  PubMed  Google Scholar 

  21. Allahgoli A, Becker J, Bianco L et al (2015) AGIPD, a high dynamic range fast detector for the European XFEL. J Instrum 10:C01023

    Article  Google Scholar 

  22. Carini GA, Boutet S, Chollet M et al (2013) Experience with the CSPAD during dedicated detector runs at LCLS. J Phys Conf Ser 493:012011

    Article  Google Scholar 

  23. Carini GA, Boutet S, Chollet M et al (2013) Measurements at sychrotrons and FELs: some differences observed with the CSPAD. IEEE Nucl Sci Symp Med Imaging Conf Rec 1:1

    Google Scholar 

  24. Bonifacio R, Salvo LD, Pierini P et al (1994) A study of linewidth, noise and fluctuations in a FEL operating in SASE. Nucl Instrum Methods Phys Res A 341:181–185

    Article  CAS  Google Scholar 

  25. Amann J, Berg W, Blank V et al (2012) Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat Photonics 6:693–698

    Article  CAS  Google Scholar 

  26. Barends TRM, White TA, Barty A et al (2015) Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data. J Synchrotron Radiat 22:644–652

    Article  CAS  PubMed  Google Scholar 

  27. Barty A, Kirian R, Maia FRNC et al (2014) Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J Appl Crystallogr 47:1118–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foucar L, Barty A, Coppola N et al (2012) CASS—CFEL-ASG software suite. Comput Phys Commun 183:2207–2213

    Article  CAS  Google Scholar 

  29. White TA, Kirian RA, Martin AV et al (2012) CrystFEL: a software suite for snapshot serial crystallography. J Appl Crystallogr 45:335–341

    Article  CAS  Google Scholar 

  30. Hattne J, Echols N, Tran R et al (2014) Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat Methods 11:545–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waterman DG, Winter G, Parkhurst JM et al (2013) The DIALS framework for integration software. CCP4 Newsl Prot Crystallogr 49:16–19

    Google Scholar 

  32. Kabsch W (2014) Processing of X-ray snapshots from crystals in random orientations. Acta Crystallogr D Biol Crystallogr 70:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Botha S, Nass K, Barends TRM et al (2015) Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr D Biol Crystallogr 71:387–397

    Article  CAS  PubMed  Google Scholar 

  34. Ginn HM, Evans G, Sauter NK et al (2016) On the release of cppxfel for processing X-ray free electron laser images. J Appl Crystallogr 49:1065–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ginn HM, Messerschmidt M, Ji X et al (2015) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ginn HM, Brewster AS, Hattne J et al (2015) A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallogr D Biol Crystallogr 71:1400–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. White TA, Mariani V, Brehm W et al (2016) Recent developments in CrystFEL. J Appl Crystallogr 49:680–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakane T, Joti Y, Tono K et al (2016) Data processing pipeline for serial femtosecond crystallography at SACLA. J Appl Crystallogr 49:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaefferer S (2000) New developments of computer-aided crystallographic analysis in transmission electron microscopy. J Appl Crystallogr 33:10–25

    Article  CAS  Google Scholar 

  40. Ayyer K, Yefanov OM, Oberthür D et al (2016) Macromolecular diffractive imaging using imperfect crystals. Nature 530:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lomb L, Steinbrener J, Bari S et al (2012) An anti-settling sample delivery instrument for serial femtosecond crystallography. J Appl Crystallogr 45:674–678

    Article  CAS  Google Scholar 

  43. Sauter NK, Hattne J, Grosse-Kunstleve RW et al (2013) New python-based methods for data processing. Acta Crystallogr D Biol Crystallogr 69:1274–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mariani V, Morgan A, Yoon CH et al (2016) OnDA: online data analysis and feedback for serial X-ray imaging. J Appl Crystallogr 49:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sauter NK, Grosse-Kunstleve RW, Adams PD (2004) Robust indexing for automatic data collection. J Appl Crystallogr 37:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Powell HR (1999) The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr D Biol Crystallogr 55(10):1690–1695

    Article  CAS  PubMed  Google Scholar 

  47. Brewster AS, Sawaya MR, Rodriguez J et al (2015) Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns. Acta Crystallogr D Biol Crystallogr 71:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gildea RJ, Waterman DG, Parkhurst JM et al (2014) New methods for indexing multi-lattice diffraction data. Acta Crystallogr D Biol Crystallogr 70:2652–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmidt S (2014) GrainSpotter: a fast and robust polycrystalline indexing algorithm. J Appl Crystallogr 47:276–284

    Article  CAS  Google Scholar 

  50. Paithankar KS, Sørensen HO, Wright JP et al (2011) Simultaneous X-ray diffraction from multiple single crystals of macromolecules. Acta Crystallogr D Biol Crystallogr 67:608–618

    Article  CAS  PubMed  Google Scholar 

  51. Yefanov O, Mariani V, Gati C et al (2015) Accurate determination of segmented X-ray detector geometry. Opt Express 23:28459

    Article  PubMed  PubMed Central  Google Scholar 

  52. White TA (2014) Post-refinement method for snapshot serial crystallography. Philos Trans R Soc Lond B Biol Sci B369:20130330

    Article  Google Scholar 

  53. White TA, Barty A, Stellato F et al (2013) Crystallographic data processing for free-electron laser sources. Acta Crystallogr D Biol Crystallogr 69:1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sauter NK, Hattne J, Brewster AS et al (2014) Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallogr D Biol Crystallogr 70:3299–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rossmann MG (1979) Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting. J Appl Crystallogr 12:225–238

    Article  CAS  Google Scholar 

  56. Kroon-Batenburg LMJ, Schreurs AMM, Ravelli RBG et al (2015) Accounting for partiality in serial crystallography using ray-tracing principles. Acta Crystallogr D Biol Crystallogr 71:1799–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kirian RA, Wang X, Weierstall U et al (2010) Femtosecond X-ray protein nanocrystallography—data analysis methods. Opt Express 18:5713–5723

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qu K, Zhou L, Dong YH (2014) An improved integration method in serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 70:1202–1211

    Article  CAS  PubMed  Google Scholar 

  59. Spence JCH, Kirian RA, Wang X et al (2011) Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Opt Express 19:2866–2873

    Article  CAS  PubMed  Google Scholar 

  60. Barends TRM, Foucar L, Ardevol A et al (2015) Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–450

    Article  CAS  PubMed  Google Scholar 

  61. Brehm W, Diederichs K (2014) Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr D Biol Crystallogr 70:101–109

    Article  CAS  PubMed  Google Scholar 

  62. Liu H, Spence JCH (2014) The indexing ambiguity in serial femtosecond crystallography (SFX) resolved using an expectation maximization algorithm. IUCr J 1:393–401

    Article  CAS  Google Scholar 

  63. Zhou L, Liu P, Dong YH (2013) Solution of the effects of twinning in femtosecond X-ray protein nanocrystallography. Chinese Phys C 37:028101

    Article  Google Scholar 

  64. Donatelli J, Sethian JA (2014) An algorithmic framework for X-ray nanocrystallographic reconstruction in the presence of the indexing ambiguity. Proc Natl Acad Sci U S A 11:593–598

    Article  Google Scholar 

  65. Sauter NK (2015) XFEL diffraction: developing processing methods to optimize data quality. J Synchrotron Radiat 22:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Uervirojnangkoorn M, Zeldin OB, Lyubimov AY et al (2015) Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. elife 4:e05421

    Article  PubMed Central  Google Scholar 

  67. Assmann G, Brehm W, Diederichs K (2016) Identification of rogue datasets in serial crystallography. J Appl Crystallogr 49:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author acknowledges financial support from the Helmholtz Association through programme oriented funds, and thanks Anton Barty and Nadia Zatsepin for reading and providing helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

White, T.A. (2017). Processing of XFEL Data. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics