Lipidomics pp 261-266 | Cite as

On Electrochemical Methods for Determination of Protein-Lipid Interaction

  • Zhiping Hu
  • Yanli MaoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1609)


Amyloid-β (Aβ) peptides are important and reliable molecular biomarkers for the diagnosis and prognosis of Alzheimer’s disease. Aggregation and fibrillization of Aβ peptides on ganglioside GM1 (GM1)-containing lipid membranes is considered a cause of neurodegenerative disease. Because GM1 is abundant in the central nervous system and plays a key role in the aggregation of Aβ, the interaction of Aβ with supported planar lipid bilayers (SPBs) containing GM1 is of great significance. We have prepared SPBs containing GM1 in order to study the electrochemical characteristics of GM1/sphingomyelin/cholesterol SPBs and their interaction with Aβ(1–40) by cyclic voltammetry and electrochemical impedance spectroscopy (EIS), which proves that electrochemical is a promising method for analyzing the interaction between peptides and lipid membranes.

Key words

Protein-lipid interaction Electrochemical Alzheimer’s disease Amyloid-β Ganglioside GM1 Lipid bilayer 



This work was supported by National Natural Science Foundation of China (Grant No. 21103043), the Science and technology research project of Henan province (No. 142102210389), the National Science Foundation of China (No. 21173068), and the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (No. 13IRTSTHN01).


  1. 1.
    Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66(1):385–407CrossRefPubMedGoogle Scholar
  2. 2.
    Lansbury PT (1997) Structural neurology: are seeds at the root of neuronal degeneration? Neuron 19(6):1151–1154CrossRefPubMedGoogle Scholar
  3. 3.
    Matsuzaki K (2007) Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim Biophys Acta 1768(8):1935–1942CrossRefPubMedGoogle Scholar
  4. 4.
    Matsuzaki K, Kato K, Yanagisawa K (2010) Aβ polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801(8):868–877CrossRefPubMedGoogle Scholar
  5. 5.
    Oikawa N, Yamaguchi H, Ogino K, Taki T, Yuyama K, Yamamoto N, Shin R-W, Furukawa K, Yanagisawa K (2009) Gangliosides determine the amyloid pathology of Alzheimer's disease. Neuroreport 20(12):1043–1046PubMedGoogle Scholar
  6. 6.
    Okada T, Ikeda K, Wakabayashi M, Ogawa M, Matsuzaki K (2008) Formation of toxic Aβ (1–40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: polymorphisms in Aβ (1–40) fibrils. J Mol Biol 382(4):1066–1074CrossRefPubMedGoogle Scholar
  7. 7.
    Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (a beta): a possible form of preamyloid in Alzheimer's disease. Nat Med 1(10):1062–1066CrossRefPubMedGoogle Scholar
  8. 8.
    Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu L-P, Moghimi SM, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine 7(5):521–540CrossRefPubMedGoogle Scholar
  9. 9.
    Kakio A, S-I N, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276(27):24985–24990CrossRefPubMedGoogle Scholar
  10. 10.
    Ikeda K, Yamaguchi T, Fukunaga S, Hoshino M, Matsuzaki K (2011) Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry 50(29):6433–6440CrossRefPubMedGoogle Scholar
  11. 11.
    Sanghera N, Swann MJ, Ronan G, Pinheiro TJ (2009) Insight into early events in the aggregation of the prion protein on lipid membranes. Biochim Biophys Acta 1788(10):2245–2251CrossRefPubMedGoogle Scholar
  12. 12.
    Mori K, Mahmood MI, Neya S, Matsuzaki K, Hoshino T (2012) Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J Phys Chem B 116(17):5111–5121CrossRefPubMedGoogle Scholar
  13. 13.
    Yahi N, Aulas A, Fantini J (2010) How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's β amyloid peptide (Aβ 1-40). PLoS One 5(2):e9079CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang J, Wang L, Liu S, Han X, Huang W, Wang E (2003) Interaction of K 7 Fe 3+ P 2 W 17 O 62 H 2 with supported bilayer lipid membranes on platinum electrode. Biophys Chem 106(1):31–38CrossRefPubMedGoogle Scholar
  15. 15.
    Han X, Tong Y, Huang W, Wang E (2002) Study of the interaction between lanthanide ions and a supported bilayer lipid membrane by cyclic voltammetry and ac impedance. J Electroanal Chem 523(1):136–141CrossRefGoogle Scholar
  16. 16.
    Liu X, Huang W, Wang E (2005) An electrochemical study on the interaction of surfactin with a supported bilayer lipid membrane on a glassy carbon electrode. J Electroanal Chem 577(2):349–354CrossRefGoogle Scholar
  17. 17.
    Ho Y-F, Wu M-H, Cheng B-H, Chen Y-W, Shih M-C (2009) Lipid-mediated preferential localization of hypericin in lipid membranes. Biochim Biophys Acta 1788(6):1287–1295CrossRefPubMedGoogle Scholar
  18. 18.
    Sugawara K, Kadoya T, Kuramitz H (2015) Monitoring of the interaction between U937 cells and electroactive daunomycin with an arginine-rich peptide. Bioelectrochemistry 105:95–102CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Y, Wang X, Wang L, Yu M, Han X (2014) Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV–Vis spectroscopy. Bioelectrochemistry 95:29–33CrossRefPubMedGoogle Scholar
  20. 20.
    Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E (2008) Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 74(1):118–123CrossRefPubMedGoogle Scholar
  21. 21.
    Islam K, Jang Y-C, Chand R, Jha SK, Lee HH, Kim Y-S (2011) Microfluidic biosensor for β-amyloid (1-42) detection using cyclic voltammetry. J Nanosci Nanotechnol 11(7):5657–5662CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of Physics and ElectronicsHenan UniversityKaifengChina
  2. 2.Institute of Optics and Photoelectronic TechnologyHenan UniversityKaifengChina

Personalised recommendations