Poly(ADP-Ribose)-Dependent Chromatin Remodeling in DNA Repair

  • Théo Lebeaupin
  • Rebecca Smith
  • Sébastien Huet
  • Gyula Timinszky
Part of the Methods in Molecular Biology book series (MIMB, volume 1608)


The tightly packed and dynamic structure of chromatin can undergo major reorganization in response to endogenous or exogenous stimuli, such as the regulation of transcription or the cell cycle, or following DNA damage. A fast and local chromatin decondensation is observed upon DNA damage induced by laser micro-irradiation. This decondensation is under the control of poly(ADP-ribosyl)ation (PARylation) by PARP1, one of the first proteins recruited at the DNA damage sites. This chapter provides a step-by-step guide to perform and analyze chromatin decondensation upon DNA damage induction. The protocol is based on fluorescence microscopy of live cells expressing a core histone tagged with a photoactivatable fluorophore. Laser micro-irradiation is used to simultaneously induce DNA damage and activate the fluorescence signal within the irradiated area. This photo-perturbation experiment can be easily implemented on any confocal laser-scanning microscope equipped with a photoperturbation module. The experimental framework can also be used to follow chromatin relaxation in parallel with the recruitment kinetics of a protein of interest at DNA lesions in cells co-expressing the tagged histones and a second protein of interest fused to a different fluorescent tag.

Key words

DNA damage response Chromatin remodeling Poly(ADP-ribosyl)ation PARP1 Live-cell imaging Photo-activation 



Our work was supported by the Ligue contre le Cancer du Grand-Ouest (committees 35 and 72, to S.H.), the European Union (FP7-PEOPLE-2011-CIG, ChromaTranscript project, to S.H. and T.L.) and the Worldwide Cancer Research (#14-1315 to G.T.). Our collaboration benefited from funding from the Hubert Curien partnership/German Academic Exchange Service – DAAD – (28486ZD, to S.H., 55934632; to G.T.). The authors declare no competing financial interests.

Supplementary material

371836_2_En_12_MOESM1_ESM.docx (13 kb)
Lebeaupin-2016-Pipeline. The supplemental data contains several small files to be used as plugins for ImageJ or MathLab. The supplementary folder contains the ImageJ macros and MatLab routines required for the analysis described in Chapter  12 and a sample image stack to test the analysis routine: Poly(ADP-Ribose)-Dependent Chromatin Remodeling in DNA Repair. The ImageJ macros should be stored in the ‘ImageJ/Toolset’ folder. The three MatLab programs should be accessible for MatLab thus should be saved inside the default MatLab path. Test images have also been provided and can be used with the analysis pipeline described in Subheading 3.4. (DOCX 14 kb)


  1. 1.
    Golia B, Singh HR, Timinszky G (2015) Poly-ADP-ribosylation signaling during DNA damage repair. Front Biosci-Landmark 20:440–457CrossRefGoogle Scholar
  2. 2.
    Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wei H, Yu X (2016) Functions of PARylation in DNA damage repair pathways. Genomics Proteomics & Bioinformatics 14(3):131-139.Google Scholar
  4. 4.
    Kruhlak MJ, Celeste A, Nussenzweig A (2006) Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle 5(17):1910–1912CrossRefPubMedGoogle Scholar
  5. 5.
    Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EHK, Scheffzek K, Hottiger MO, Ladurner AG (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–U941CrossRefPubMedGoogle Scholar
  6. 6.
    Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877CrossRefPubMedGoogle Scholar
  7. 7.
    Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wunsche A, Satagopam V, Schmitz MHA, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289):721–727CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beaudouin JL, Mora-Bermudez F, Klee T, Daigle N, Ellenberg J (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90(6):1878–1894CrossRefPubMedGoogle Scholar
  10. 10.
    Ali AA, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M, Ladurner AG, Pearl LH, Oliver AW (2012) The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 19(7):685–692CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nedelec F, Surrey T, Maggs AC (2001) Dynamic concentration of motors in microtubule arrays. Phys Rev Lett 86(14):3192–3195CrossRefPubMedGoogle Scholar
  12. 12.
    McNally JG, Smith CL (2001) Photobleaching by confocal microscopy. In: Diaspro A (ed) Confocol and two-photon microscopy: foundations, applications and advances. Wiley, Hoboken, NJ, pp 525–538Google Scholar
  13. 13.
    Bancaud A, Huet S, Rabut G, Ellenberg J (2010) Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. In: Goldman RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  14. 14.
    Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  15. 15.
    Thevenaz P, Unser M (1998) An efficient mutual information optimizer for multiresolution image registration. 1998 International Conference on Image Processing - Proceedings, Vol 1. Chicago, ILGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Théo Lebeaupin
    • 1
    • 2
  • Rebecca Smith
    • 1
  • Sébastien Huet
    • 2
  • Gyula Timinszky
    • 1
  1. 1.Department of Physiological Chemistry, Biomedical Center MunichLudwig-Maximilians-Universität MünchenMartinsriedGermany
  2. 2.CNRS, UMR 6290, Institut Génétique et Développement de Rennes and Université de Rennes 1, Structure fédérative de recherche Biosit35043 Rennes CedexFrance

Personalised recommendations