Skip to main content

High-Resolution Image Stitching as a Tool to Assess Tissue-Level Protein Distribution and Localization

  • Protocol
  • First Online:
Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1606))

Abstract

High-resolution microscopy has traditionally come at the expense of field of view, resulting in suboptimal interpretation of protein distribution throughout large or complex samples. Likewise, a low-resolution microscopic approach inhibits the ability of researchers to precisely localize proteins of interest at the subcellular level. Until recently, the ability to combine the strengths of these approaches was limited and technically impractical for most laboratories to implement. Continued advances in microscope automation, sophisticated software applications, and modern workstations have enabled expansion of such combinatorial approaches to researchers outside computationally focused fields. Through image stitching, researchers can acquire large field-of-view, multidimensional datasets, at the diffraction limit of high-numerical aperture objectives to effectively map protein distribution in large samples with high precision. Here, we outline a protocol for acquisition of such datasets with the purpose of introducing inexperienced researchers to the methodology of large image stitching using the widely available technology of laser point-scanning confocal microscopy in combination with basic microscope automation and freely available software for post-acquisition processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  2. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  CAS  PubMed  Google Scholar 

  3. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  4. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi:10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson MA, Lew MD, Moerner WE (2012) Extending microscopic resolution with single-molecule imaging and active control. Annu Rev Biophys 41:321–342. doi:10.1146/annurev-biophys-050511-102250

    Article  CAS  PubMed  Google Scholar 

  8. Barbier de Reuille P, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schupbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A, Burian A, Hofhuis H, Sapala A, Lipowczan M, Heimlicher MB, Robinson S, Bayer EM, Basler K, Koumoutsakos P, Roeder AH, Aegerter-Wilmsen T, Nakayama N, Tsiantis M, Hay A, Kwiatkowska D, Xenarios I, Kuhlemeier C, Smith RS (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife 4:05864. doi:10.7554/eLife.05864

    Article  PubMed  Google Scholar 

  9. Bria A, Iannello G (2012) TeraStitcher - a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13:316. doi:10.1186/1471-2105-13-316

    Article  PubMed  PubMed Central  Google Scholar 

  10. Emmenlauer M, Ronneberger O, Ponti A, Schwarb P, Griffa A, Filippi A, Nitschke R, Driever W, Burkhardt H (2009) XuvTools: free, fast and reliable stitching of large 3D datasets. J Microsc 233(1):42–60. doi:10.1111/j.1365-2818.2008.03094.x

    Article  CAS  PubMed  Google Scholar 

  11. Morales-Navarrete H, Segovia-Miranda F, Klukowski P, Meyer K, Nonaka H, Marsico G, Chernykh M, Kalaidzidis A, Zerial M, Kalaidzidis Y (2015) A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture. Elife 4. doi:10.7554/eLife.11214

  12. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25(11):1463–1465. doi:10.1093/bioinformatics/btp184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  15. Preibisch S, Saalfeld S, Tomancak P (2009) ImageJ Stitching plugin. http://imagej.net/Image_Stitching

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) grants RO1-DK075555 and RO1-DK095811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Tyska Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Millis, B.A., Tyska, M.J. (2017). High-Resolution Image Stitching as a Tool to Assess Tissue-Level Protein Distribution and Localization. In: Espina, V. (eds) Molecular Profiling. Methods in Molecular Biology, vol 1606. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6990-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6990-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6989-0

  • Online ISBN: 978-1-4939-6990-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics