Advertisement

Clearance of Maternal RNAs: Not a Mummy’s Embryo Anymore

  • Antonio Marco
Part of the Methods in Molecular Biology book series (MIMB, volume 1605)

Abstract

Until the zygotic genome is activated, early development relies on the products deposited by the mother. Once the zygotic genome starts to be transcribed, most maternal products are not needed anymore by the developing embryo. This emancipation from the maternal genome occurs during the Zygotic Genome Activation (ZGA). Although the process by which the maternal content is replaced with zygotic products differs from species to species, there is a common theme to all of them: maternal transcripts are actively degraded. Here, a review of how the degradation of maternal RNAs is regulated during early development and discussions on some computational tools that may be of use in this research area are outlined.

Key words

RNA degradation Deadenylation RNA-binding proteins microRNAs Maternal-to-zygotic transition Zygotic genome activation 

References

  1. 1.
    Ziegler HE (1898) Experimentelle Studien über die Zelltheilung. Arch Für Entwicklungsmechanik Org 6:249–293. doi: 10.1007/BF02152958 CrossRefGoogle Scholar
  2. 2.
    Chambers R (1924) The physical structure of protoplasm as determined by microdissection and injection. In: Cowdry EV (ed) General cytology. The University of Chicago Press, Chicago, IL, pp 237–309Google Scholar
  3. 3.
    Briggs R, Green EU, King TJ (1951) An investigation of the capacity for cleavage and differentiation in Rana pipiens eggs lacking “functional” chromosomes. J Exp Zool 116:455–499. doi: 10.1002/jez.1401160307 CrossRefPubMedGoogle Scholar
  4. 4.
    Redfield H (1926) The maternal inheritance of a sex-limited lethal effect in DROSOPHILA MELANOGASTER. Genetics 11:482–502PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kalthoff K, Sander K (1968) Der Entwicklungsgang der Mißbildung “Doppelabdomen” im partiell UV-bestrahlten Ei von Smittia parthenogenetica (Dipt., Chironomidae). Wilhelm Roux Arch Für Entwicklungsmechanik Org 161:129–146. doi: 10.1007/BF00585968 CrossRefGoogle Scholar
  6. 6.
    Gilbert SF, Singer SR, Tyler MS, Kozlowski RN (2006) Developmental biology. Sinauer Associates, Sunderland, MAGoogle Scholar
  7. 7.
    Davidson EH (1986) Gene activity in early development, 3rd revised edn. Academic Press Inc, Orlando, FLGoogle Scholar
  8. 8.
    Slater I, Gillespie D, Slater DW (1973) Cytoplasmic adenylylation and processing of maternal RNA. Proc Natl Acad Sci U S A 70:406–411CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilt FH (1973) Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc Natl Acad Sci 70:2345–2349CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Watson JD (1976) Molecular biology of the gene, 3rd edn. Benjamin-Cummings Publishing Co, Menlo Park, CAGoogle Scholar
  11. 11.
    Hough-Evans BR, Wold BJ, Ernst SG et al (1977) Appearance and persistence of maternal RNA sequences in sea urchin development. Dev Biol 60:258–277. doi: 10.1016/0012-1606(77)90123-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Wilt FH (1977) The dynamics of maternal poly(A)-containing mRNA in fertilized sea urchin eggs. Cell 11:673–681CrossRefPubMedGoogle Scholar
  13. 13.
    Jeffery WR (1977) Polyadenylation of maternal and newly-synthesized RNA during starfish oocyte maturation. Dev Biol 57:98–108CrossRefPubMedGoogle Scholar
  14. 14.
    Sagata N, Shiokawa K, Yamana K (1980) A study on the steady-state population of poly(A)+RNA during early development of Xenopus laevis. Dev Biol 77:431–448CrossRefPubMedGoogle Scholar
  15. 15.
    Bachvarova R, De Leon V (1980) Polyadenylated RNA of mouse ova and loss of maternal RNA in early development. Dev Biol 74:1–8CrossRefPubMedGoogle Scholar
  16. 16.
    Pikó L, Clegg KB (1982) Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol 89:362–378CrossRefPubMedGoogle Scholar
  17. 17.
    De Leon V, Johnson A, Bachvarova R (1983) Half-lives and relative amounts of stored and polysomal ribosomes and poly(A) + RNA in mouse oocytes. Dev Biol 98:400–408CrossRefPubMedGoogle Scholar
  18. 18.
    Shaw G, Kamen R (1986) A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667CrossRefPubMedGoogle Scholar
  19. 19.
    Duval C, Bouvet P, Omilli F et al (1990) Stability of maternal mRNA in Xenopus embryos: role of transcription and translation. Mol Cell Biol 10:4123–4129. doi: 10.1128/MCB.10.8.4123 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bashirullah A, Halsell SR, Cooperstock RL et al (1999) Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J 18:2610–2620. doi: 10.1093/emboj/18.9.2610 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042. doi: 10.1242/dev.033183 CrossRefPubMedGoogle Scholar
  22. 22.
    Walser CB, Lipshitz HD (2011) Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev 21:431–443. doi: 10.1016/j.gde.2011.03.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Smibert CA, Wilson JE, Kerr K, Macdonald PM (1996) smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev 10:2600–2609. doi: 10.1101/gad.10.20.2600 CrossRefPubMedGoogle Scholar
  24. 24.
    Smibert CA, Lie YS, Shillinglaw W et al (1999) Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5:1535–1547CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dahanukar A, Walker JA, Wharton RP (1999) Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol Cell 4:209–218. doi: 10.1016/S1097-2765(00)80368-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Semotok JL, Cooperstock RL, Pinder BD et al (2005) Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila Embryo. Curr Biol 15:284–294. doi: 10.1016/j.cub.2005.01.048 CrossRefPubMedGoogle Scholar
  27. 27.
    Tadros W, Goldman AL, Babak T et al (2007) SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell 12:143–155. doi: 10.1016/j.devcel.2006.10.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Nelson MR, Leidal AM, Smibert CA (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 23:150–159. doi: 10.1038/sj.emboj.7600026 CrossRefPubMedGoogle Scholar
  29. 29.
    Pinder BD, Smibert CA (2013) microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep 14:80–86. doi: 10.1038/embor.2012.192 CrossRefPubMedGoogle Scholar
  30. 30.
    Chen L, Dumelie JG, Li X et al (2014) Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. Genome Biol 15:R4. doi: 10.1186/gb-2014-15-1-r4 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Giraldez AJ, Cinalli RM, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838. doi: 10.1126/science.1109020 CrossRefPubMedGoogle Scholar
  32. 32.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887. doi: 10.1152/physrev.00006.2010 CrossRefPubMedGoogle Scholar
  34. 34.
    Marco A, Ninova M, Griffiths-Jones S (2013) Multiple products from microRNA transcripts. Biochem Soc Trans 41:850–854. doi: 10.1042/BST20130035 CrossRefPubMedGoogle Scholar
  35. 35.
    Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221. doi: 10.1186/gb-2011-12-4-221 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wienholds E, Koudijs MJ, van Eeden FJM et al (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218. doi: 10.1038/ng1251 CrossRefPubMedGoogle Scholar
  37. 37.
    Giraldez AJ, Mishima Y, Rihel J et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79. doi: 10.1126/science.1122689 CrossRefPubMedGoogle Scholar
  38. 38.
    Lund E, Liu M, Hartley RS et al (2009) Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15:2351–2363. doi: 10.1261/rna.1882009 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bushati N, Stark A, Brennecke J, Cohen SM (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 18:501–506. doi: 10.1016/j.cub.2008.02.081 CrossRefPubMedGoogle Scholar
  40. 40.
    Benoit B, He CH, Zhang F et al (2009) An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition. Development 136:923–932. doi: 10.1242/dev.031815 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Renzis SD, Elemento O, Tavazoie S, Wieschaus EF (2007) Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila Embryo. PLoS Biol 5:e117. doi: 10.1371/journal.pbio.0050117 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613. doi: 10.1146/annurev-cellbio-100913-013027 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Thomsen S, Anders S, Janga SC et al (2010) Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol 11:R93. doi: 10.1186/gb-2010-11-9-r93 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Marco A (2015) Selection against maternal microRNA target sites in maternal transcripts. G3 5:2199–2207. doi: 10.1534/g3.115.019497 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kugler J-M, Chen Y-W, Weng R, Cohen SM (2013) Maternal loss of miRNAs leads to increased variance in primordial germ cell numbers in Drosophila melanogaster. G3 3:1573–1576. doi: 10.1534/g3.113.007591Google Scholar
  46. 46.
    Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3′UTRs by embryonic MicroRNA families. Mol Cell 40:558–570. doi: 10.1016/j.molcel.2010.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lee M, Choi Y, Kim K et al (2014) Adenylation of maternally inherited microRNAs by wispy. Mol Cell 56:696–707. doi: 10.1016/j.molcel.2014.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Elliott D (2011) Molecular biology of RNA. Oxford University Press, OxfordGoogle Scholar
  49. 49.
    Oberstrass FC, Lee A, Stefl R et al (2006) Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol 13:160–167. doi: 10.1038/nsmb1038 CrossRefPubMedGoogle Scholar
  50. 50.
    Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Foat BC, Stormo GD (2009) Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs. Mol Syst Biol 5:268. doi: 10.1038/msb.2009.24 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Marco A (2017) seedVicious: a versatile microRNA target site prediction tool with evolutionary applications. http://seedvicious.essex.ac.uk/
  54. 54.
    van Dongen S, Abreu-Goodger C, Enright A (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5(1025):1023CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Alexiou P, Maragkakis M, Papadopoulos GL et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055. doi: 10.1093/bioinformatics/btp565 CrossRefPubMedGoogle Scholar
  56. 56.
    Giraldez AJ (2010) microRNAs, the cell’s Nepenthe: clearing the past during the maternal-to-zygotic transition and cellular reprogramming. Curr Opin Genet Dev 20:369–375. doi: 10.1016/j.gde.2010.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lorenz R, Bernhart SH, Höner zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithms. Mol Biol 6:26. doi: 10.1186/1748-7188-6-26 Google Scholar
  58. 58.
    Paz I, Kosti I, Ares M et al (2014) RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res 42:W361–W367. doi: 10.1093/nar/gku406 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kazan H, Ray D, Chan ET et al (2010) RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol 6:e1000832. doi: 10.1371/journal.pcbi.1000832 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hiller M, Pudimat R, Busch A, Backofen R (2006) Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 34:e117. doi: 10.1093/nar/gkl544 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. doi: 10.7554/eLife.05005 Google Scholar
  62. 62.
    Enright A, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1. doi: 10.1186/gb-2003-5-1-r1 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454. doi: 10.1093/nar/gkl243 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of EssexColchesterUK

Personalised recommendations