Skip to main content

Studies of Lassa Virus Cell Entry

Part of the Methods in Molecular Biology book series (MIMB,volume 1604)

Abstract

Host cell entry is the first and most fundamental step of every virus infection and represents a major barrier for zoonotic transmission and viral emergence. Targeting viral entry appears further as a promising strategy for therapeutic intervention. Several cellular receptors have been identified for Lassa virus, including dystroglycan, TAM receptor tyrosine kinases, and C-type lectins. Upon receptor binding, LASV enters the host cell via a largely unknown clathrin- and dynamin-independent endocytotic pathway that delivers the virus to late endosomes, where fusion occurs after engagement of a second, intracellular receptor, the late endosomal/lysosomal resident protein LAMP1. Here, we describe a series of experimental approaches to investigate LASV cell entry and to test candidate inhibitors for their action at this early and decisive step of infection.

Key words

  • Lassa virus
  • Viral entry
  • Receptor
  • Endocytosis
  • Endosome
  • Inhibitor

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6981-4_9
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6981-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081

    CAS  CrossRef  PubMed  Google Scholar 

  2. Spiropoulou CF, Kunz S, Rollin PE, Campbell KP, Oldstone MB (2002) New World arenavirus clade C, but not clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J Virol 76:5140–5146

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    CAS  CrossRef  PubMed  Google Scholar 

  4. Kanagawa M, Saito F, Kunz S, Yoshida-Moriguchi T, Barresi R, Kobayashi YM, Muschler J, Dumanski JP, Michele DE, Oldstone MB et al (2004) Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117:953–964

    CAS  CrossRef  Google Scholar 

  5. Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MB (2005) Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 79:14282–14296

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Rojek JM, Spiropoulou CF, Campbell KP, Kunz S (2007) Old world and clade C new world arenaviruses mimic the molecular mechanism of receptor recognition used by alpha-dystroglycan’s host-derived ligands. J Virol 81:5685–5695

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP (2013) LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 503:136–140

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Yoshida-Moriguchi T, Campbell KP (2015) Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25:702–713

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven RM, Carette JE, Topaloglu H, Meinecke P et al (2013) Deciphering the glycosylome of dystroglycanopathies using haploid screens for Lassa virus entry. Science 340:479–483

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Shimojima M, Stroher U, Ebihara H, Feldmann H, Kawaoka Y (2012) Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol 86:2067–2078

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Goncalves AR, Moraz ML, Pasquato A, Helenius A, Lozach PY, Kunz S (2013) Role of DC-SIGN in Lassa virus entry into human dendritic cells. J Virol 87:11504–11515

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Van Breedam W, Pohlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ (2014) Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev 38:598–632

    CAS  CrossRef  PubMed  Google Scholar 

  14. Amara A, Mercer J (2015) Viral apoptotic mimicry. Nat Rev Microbiol 13:461–469

    CAS  CrossRef  PubMed  Google Scholar 

  15. Lemke G, Burstyn-Cohen T (2010) TAM receptors and the clearance of apoptotic cells. Ann N Y Acad Sci 1209:23–29

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Cosset FL, Marianneau P, Verney G, Gallais F, Tordo N, Pecheur EI, ter Meulen J, Deubel V, Bartosch B (2009) Characterization of Lassa virus cell entry and neutralization with Lassa virus pseudoparticles. J Virol 83:3228–3237

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Klewitz C, Klenk HD, ter Meulen J (2007) Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol 88:2320–2328

    CAS  CrossRef  PubMed  Google Scholar 

  18. Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S (2008) Different mechanisms of cell entry by human-pathogenic old world and new world arenaviruses. J Virol 82:7677–7687

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S (2011) Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog 7:e1002232

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A (2008) Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology 378:21–33

    CAS  CrossRef  PubMed  Google Scholar 

  21. Panda D, Das A, Dinh PX, Subramaniam S, Nayak D, Barrows NJ, Pearson JL, Thompson J, Kelly DL, Ladunga I et al (2011) RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. Proc Natl Acad Sci U S A 108:19036–19041

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Iwasaki M, Ngo N, de la Torre JC (2014) Sodium hydrogen exchangers contribute to arenavirus cell entry. J Virol 88:643–654

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS, Soh TK, Stubbs SH, Janssen H, Damme M, Saftig P et al (2014) Virus entry Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506–1510

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Nunberg JH, York J (2012) The curious case of arenavirus entry, and its inhibition. Virus 4:83–101

    CAS  CrossRef  Google Scholar 

  25. Sanchez AB, de la Torre JC (2006) Rescue of the prototypic arenavirus LCMV entirely from plasmid. Virology 350:370–380

    CAS  CrossRef  PubMed  Google Scholar 

  26. Moraz ML, Pythoud C, Turk R, Rothenberger S, Pasquato A, Campbell KP, Kunz S (2013) Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan. Cell Microbiol 15:689–700

    CAS  CrossRef  PubMed  Google Scholar 

  27. Rojek JM, Moraz ML, Pythoud C, Rothenberger S, Van der Goot FG, Campbell KP, Kunz S (2012) Binding of Lassa virus perturbs extracellular matrix-induced signal transduction via dystroglycan. Cell Microbiol 14:1122–1134

    CAS  CrossRef  PubMed  Google Scholar 

  28. Lee AM, Cruite J, Welch MJ, Sullivan B, Oldstone MB (2013) Pathogenesis of Lassa fever virus infection: I. Susceptibility of mice to recombinant Lassa Gp/LCMV chimeric virus. Virology 442:114–121

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Sommerstein R, Ramos da Palma J, Olschlager S, Bergthaler A, Barba L, Lee BP, Pasquato A, Flatz L (2014) Evolution of recombinant lymphocytic choriomeningitis virus/Lassa virus in vivo highlights the importance of the GPC cytosolic tail in viral fitness. J Virol 88:8340–8348

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Pinschewer DD, Perez M, Sanchez AB, de la Torre JC (2003) Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc Natl Acad Sci U S A 100:7895–7900

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Kunz S, Rojek JM, Perez M, Spiropoulou CF, Oldstone MB (2005) Characterization of the interaction of Lassa fever virus with its cellular receptor alpha-dystroglycan. J Virol 79:5979–5987

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Reignier T, Oldenburg J, Noble B, Lamb E, Romanowski V, Buchmeier MJ, Cannon PM (2006) Receptor use by pathogenic arenaviruses. Virology 353:111–120. Epub 2006 Jun 2021

    CAS  CrossRef  PubMed  Google Scholar 

  33. Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC, Hruby DE, Amberg SM (2008) Identification of a broad-spectrum arenavirus entry inhibitor. J Virol 82:10768–10775

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Rojek JM, Spiropoulou CF, Kunz S (2006) Characterization of the cellular receptors for the South American hemorrhagic fever viruses Junin, Guanarito, and Machupo. Virology 349:476–491

    CAS  CrossRef  PubMed  Google Scholar 

  36. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75:3327–3331

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Ohkuma S, Poole B (1981) Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol 90:656–664

    CAS  CrossRef  PubMed  Google Scholar 

  38. Rojek JM, Perez M, Kunz S (2008) Cellular entry of lymphocytic choriomeningitis virus. J Virol 82:1505–1517

    CAS  CrossRef  PubMed  Google Scholar 

  39. Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    CAS  CrossRef  PubMed  Google Scholar 

  40. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346:473–477

    CAS  CrossRef  PubMed  Google Scholar 

  41. Buchmeier MJ, Lewicki HA, Tomori O, Oldstone MB (1981) Monoclonal antibodies to lymphocytic choriomeningitis and pichindé viruses: generation, characterization, and cross-reactivity with other arenaviruses. Virology 113:73–85

    CAS  CrossRef  PubMed  Google Scholar 

  42. Weber EL, Buchmeier MJ (1988) Fine mapping of a peptide sequence containing an antigenic site conserved among arenaviruses. Virology 164:30–38

    CAS  CrossRef  PubMed  Google Scholar 

  43. Dutko FJ, Oldstone MB (1983) Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J Gen Virol 64:1689–1698

    CAS  CrossRef  PubMed  Google Scholar 

  44. Perez M, Watanabe M, Whitt MA, de la Torre JC (2001) N-terminal domain of Borna disease virus G (p56) protein is sufficient for virus receptor recognition and cell entry. J Virol 75:7078–7085

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Beyer WR, Westphal M, Ostertag W, von Laer D (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 76:1488–1495

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pasquato, A., Fernandez, A.H., Kunz, S. (2018). Studies of Lassa Virus Cell Entry. In: Salvato, M. (eds) Hemorrhagic Fever Viruses. Methods in Molecular Biology, vol 1604. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6981-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6981-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6980-7

  • Online ISBN: 978-1-4939-6981-4

  • eBook Packages: Springer Protocols