Shuman EK (2010) Global climate change and infectious diseases. N Engl J Med 362:1061–1063
CAS
CrossRef
PubMed
Google Scholar
Tami A, Grillet ME, Grobusch MP (2016) Applying Geographical Information Systems (GIS) to arboviral disease surveillance and control: a powerful tool. Travel Med Infect Dis 14:9–10. doi:10.1016/j.tmaid.2016.01.002
CrossRef
PubMed
Google Scholar
Clements ACA, Pfeiffer DU (2009) Emerging viral zoonoses: frameworks for spatial and spatiotemporal risk assessment and resource planning. Vet J 182:21–30. doi:10.1016/j.tvjl.2008.05.010
CrossRef
PubMed
Google Scholar
de Melo DPO, Scherrer LR, Eiras ÁE (2012) Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquiTRAP: a space-time clusters analysis. PLoS One. doi:10.1371/journal.pone.0042125
Google Scholar
Van den Hurk AF, Nisbet DJ, Foley PN et al (2002) Isolation of arboviruses from mosquitoes (Diptera: Culicidae) collected from the Gulf Plains region of northwest Queensland, Australia. J Med Entomol 39:786–792. doi:10.1603/0022-2585(2002)039[0786:IOAFMD]2.0.CO;2
CrossRef
PubMed
Google Scholar
Van Den Hurk AF, Hall-Mendelin S, Johansen CA et al (2012) Evolution of mosquito-based arbovirus surveillance systems in Australia. J Biomed Biotechnol. doi:10.1155/2012/325659
PubMed
PubMed Central
Google Scholar
Flies EJ, Toi C, Weinstein P et al (2015) Converting mosquito surveillance to arbovirus surveillance with honey-baited nucleic acid preservation cards. Vector Borne Zoonotic Dis 15:397–403. doi:10.1089/vbz.2014.1759
CrossRef
PubMed
Google Scholar
Konrad SK, Zou L, Miller SN (2013) A geographical information system-based web model of arbovirus transmission risk in the continental United States of America. Geospat Health 7:157–159
CrossRef
Google Scholar
Lozano Fuentes S, Wedyan F, Hernandez Garcia E et al (2013) Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J Med Entomol 50:879–889. doi:10.1603/ME13008
CrossRef
PubMed
PubMed Central
Google Scholar
Faulde MK, Spiesberger M, Abbas B (2012) Sentinel site-enhanced near-real time surveillance documenting West Nile virus circulation in two Culex mosquito species indicating different transmission characteristics. J Egypt Soc Parasitol 42:461–474
CrossRef
PubMed
Google Scholar
Silver JB (2008) Mosquito ecology - field sampling methods, 2nd edn. doi:10.1007/978-1-4020-6666-5
CrossRef
Google Scholar
Sánchez-Seco MP, Rosario D, Quiroz E et al (2001) A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus. J Virol Methods 95:153–161. doi:10.1016/S0166-0934(01)00306-8
CrossRef
PubMed
Google Scholar
Conway MJ, Colpitts TM, Fikrig E (2014) Role of the vector in arbovirus transmission. Annu Rev Virol 1:71–88. doi:10.1146/annurev-virology-031413-085513
CrossRef
PubMed
Google Scholar
Bryant JE, Crabtree MB, Nam VS et al (2005) Short report: isolation of arboviruses from mosquitoes collected in Northern Vietnam. Am J Trop Med Hyg 73:470–473. [pii]: 73/2/470
PubMed
Google Scholar
Turell MJ, O’Guinn ML, Jones JW et al (2005) Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin region of Peru. J Med Entomol 42:891–898. doi:10.1603/0022-2585(2005)042[0891:IOVFMD]2.0.CO;2
CAS
CrossRef
PubMed
Google Scholar
Acuff VR (1976) Trap biases influencing mosquito collections. Mosq News 36:51–53
Google Scholar
Hoyos-López R, Uribe Soto SI, Rúa-Uribe G, Gallego-Gómez JC (2015) Molecular identification of Saint Louis encephalitis virus genotype IV in Colombia. Mem Inst Oswaldo Cruz 110:719–725. doi:10.1590/0074-02760280040
CrossRef
PubMed
PubMed Central
Google Scholar
Hoyos-López R, Uribe Soto SI, Gallego-Gómez JC (2015) Evolutionary relationships of West Nile virus detected in mosquitoes from a migratory bird zone of Colombian Caribbean. Virol J 12:80. doi:10.1186/s12985-015-0310-8
CrossRef
Google Scholar
Vázquez A, Sánchez-Seco M-P, Palacios G et al (2012) Novel flaviviruses detected in different species of mosquitoes in Spain. Vector Borne Zoonotic Dis 12:223–229. doi:10.1089/vbz.2011.0687
CrossRef
PubMed
PubMed Central
Google Scholar
Sánchez-Seco MP, Rosario D, Domingo C et al (2005) Generic RT-nested-PCR for detection of flaviviruses using degenerated primers and internal control followed by sequencing for specific identification. J Virol Methods 126:101–109. doi:10.1016/j.jviromet.2005.01.025
CrossRef
PubMed
Google Scholar
Calzolari M, Zé-Zé L, Růžek D et al (2012) Detection of mosquito-only flaviviruses in Europe. J Gen Virol 93:1215–1225. doi:10.1099/vir.0.040485-0
CAS
CrossRef
PubMed
Google Scholar
Ritchie SA, van den Hurk AF, Zborowski P et al (2007) Operational trials of remote mosquito trap systems for Japanese encephalitis virus surveillance in the Torres Strait, Australia. Vector Borne Zoonotic Dis 7:497–506. doi:10.1089/vbz.2006.0643
CrossRef
PubMed
Google Scholar
Ritchie SA, Cortis G, Paton C et al (2013) A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J Med Entomol 50:185–194. doi:10.1603/ME12112
CrossRef
PubMed
Google Scholar
Hall-Mendelin S, Ritchie SA, Johansen CA et al (2010) Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc Natl Acad Sci 107:11255–11259. doi:10.1073/pnas.1002040107
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ramesh D, Muniaraj M, Samuel PP et al (2015) Seasonal abundance & role of predominant Japanese encephalitis vectors Culex tritaeniorhynchus & Cx. gelidus Theobald in Cuddalore district, Tamil Nadu. Indian J Med Res 142:23. doi:10.4103/0971-5916.176607
CAS
Google Scholar
Mitchell CJ, Darsie RF Jr, Monath TP, Sabattini MS, Daffner J (1985) The use of an animal-baited net trap for collecting mosquitoes during western equine encephalitis investigations in Argentina. J Am Mosq Control Assoc 1:43–47
CAS
PubMed
Google Scholar
Johnson BJ, Kerlin T, Hall-Mendelin S et al (2015) Development and field evaluation of the sentinel mosquito arbovirus capture kit (SMACK). Parasit Vectors 8:509. doi:10.1186/s13071-015-1114-9
CrossRef
PubMed
PubMed Central
Google Scholar
Pezzin A, Sy V, Puggioli A et al (2016) Comparative study on the effectiveness of different mosquito traps in arbovirus surveillance with a focus on WNV detection. Acta Trop 153:93–100. doi:10.1016/j.actatropica.2015.10.002
CrossRef
PubMed
Google Scholar
Drago A, Marini F, Caputo B et al (2012) Looking for the gold standard: assessment of the effectiveness of four traps for monitoring mosquitoes in Italy. J Vector Ecol 37:117–123. doi:10.1111/j.1948-7134.2012.00208.x
CrossRef
PubMed
Google Scholar
L’Ambert G, Ferré JB, Schaffner F, Fontenille D (2012) Comparison of different trapping methods for surveillance of mosquito vectors of West Nile virus in Rhône Delta, France. J Vector Ecol 37:269–275. doi:10.1111/j.1948-7134.2012.00227.x
CrossRef
PubMed
Google Scholar
Panella NA, Crockett RJK, Biggerstaff BJ, Komar N (2016) Novel device for collecting resting mosquitoes. J Am Mosq Control Assoc 27:323–325. doi:10.2987/09-5900.1
CrossRef
Google Scholar
Williams GM, Gingrich JB (2007) Comparison of light traps, gravid traps, and resting boxes for West Nile virus surveillance. J Vector Ecol 32:285–291
CrossRef
PubMed
Google Scholar
van den Hurk AF, Hall-Mendelin S, Townsend M, Kurucz N, Edwards J, Ehlers G, Rodwell C, Moore FA, McMahon JL, Northill JA, Simmons RJ, Cortis G, Melville L, Whelan PI, Ritchie SA (2014) Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations. Vector Borne Zoonotic Dis 14:66–73
CrossRef
PubMed
Google Scholar