Skip to main content

Sampling Design and Mosquito Trapping for Surveillance of Arboviral Activity

Part of the Methods in Molecular Biology book series (MIMB,volume 1604)

Abstract

Mosquitoes are the most important vectors for arboviral human diseases across the world. Diseases such as Dengue Fever (DF), West Nile Virus (WNV), Yellow Fever (YF), Japanese Encephalitis (JE), Venezuelan Equine Encephalitis (VEE), and St. Louis Encephalitis (SLE), among others, have a deep impact in public health. Usually mosquitoes acquire the arboviral infection when they feed on viremic animals (birds or mammals), so their infection can be detected along the year or in short periods of time (seasons). All of this depends on the frequency and seasonality of the encounters between viremic animals and vectors.

With the convergence of several phenomena like the increasing traveling of human populations, globalization of economy and more recently the global warming, the introduction of nonendemic arbovirus into new areas has become the current scenario. As examples of this new social and environmental frame we can mention the outbreak of West Nile Virus in North America in the late 1990s and more recently the outbreaks of chikungunya and Zika virus in the Americas. The present chapter deals with one of the first steps in the development of research studies and diagnosis programs, the surveillance of arboviruses in their vectors, the sampling design and mosquito trapping methods. The chapter also includes some important considerations and tips to be taken into account during the mosquito fieldwork.

Key words

  • GIS
  • Mosquitoes
  • Sampling
  • Trapping methods
  • Arbovirus
  • Surveillance

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6981-4_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6981-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shuman EK (2010) Global climate change and infectious diseases. N Engl J Med 362:1061–1063

    CAS  CrossRef  PubMed  Google Scholar 

  2. Tami A, Grillet ME, Grobusch MP (2016) Applying Geographical Information Systems (GIS) to arboviral disease surveillance and control: a powerful tool. Travel Med Infect Dis 14:9–10. doi:10.1016/j.tmaid.2016.01.002

    CrossRef  PubMed  Google Scholar 

  3. Clements ACA, Pfeiffer DU (2009) Emerging viral zoonoses: frameworks for spatial and spatiotemporal risk assessment and resource planning. Vet J 182:21–30. doi:10.1016/j.tvjl.2008.05.010

    CrossRef  PubMed  Google Scholar 

  4. de Melo DPO, Scherrer LR, Eiras ÁE (2012) Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquiTRAP: a space-time clusters analysis. PLoS One. doi:10.1371/journal.pone.0042125

    Google Scholar 

  5. Van den Hurk AF, Nisbet DJ, Foley PN et al (2002) Isolation of arboviruses from mosquitoes (Diptera: Culicidae) collected from the Gulf Plains region of northwest Queensland, Australia. J Med Entomol 39:786–792. doi:10.1603/0022-2585(2002)039[0786:IOAFMD]2.0.CO;2

    CrossRef  PubMed  Google Scholar 

  6. Van Den Hurk AF, Hall-Mendelin S, Johansen CA et al (2012) Evolution of mosquito-based arbovirus surveillance systems in Australia. J Biomed Biotechnol. doi:10.1155/2012/325659

    PubMed  PubMed Central  Google Scholar 

  7. Flies EJ, Toi C, Weinstein P et al (2015) Converting mosquito surveillance to arbovirus surveillance with honey-baited nucleic acid preservation cards. Vector Borne Zoonotic Dis 15:397–403. doi:10.1089/vbz.2014.1759

    CrossRef  PubMed  Google Scholar 

  8. Konrad SK, Zou L, Miller SN (2013) A geographical information system-based web model of arbovirus transmission risk in the continental United States of America. Geospat Health 7:157–159

    CrossRef  Google Scholar 

  9. Lozano Fuentes S, Wedyan F, Hernandez Garcia E et al (2013) Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J Med Entomol 50:879–889. doi:10.1603/ME13008

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Faulde MK, Spiesberger M, Abbas B (2012) Sentinel site-enhanced near-real time surveillance documenting West Nile virus circulation in two Culex mosquito species indicating different transmission characteristics. J Egypt Soc Parasitol 42:461–474

    CrossRef  PubMed  Google Scholar 

  11. Silver JB (2008) Mosquito ecology - field sampling methods, 2nd edn. doi:10.1007/978-1-4020-6666-5

    CrossRef  Google Scholar 

  12. Sánchez-Seco MP, Rosario D, Quiroz E et al (2001) A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus. J Virol Methods 95:153–161. doi:10.1016/S0166-0934(01)00306-8

    CrossRef  PubMed  Google Scholar 

  13. Conway MJ, Colpitts TM, Fikrig E (2014) Role of the vector in arbovirus transmission. Annu Rev Virol 1:71–88. doi:10.1146/annurev-virology-031413-085513

    CrossRef  PubMed  Google Scholar 

  14. Bryant JE, Crabtree MB, Nam VS et al (2005) Short report: isolation of arboviruses from mosquitoes collected in Northern Vietnam. Am J Trop Med Hyg 73:470–473. [pii]: 73/2/470

    PubMed  Google Scholar 

  15. Turell MJ, O’Guinn ML, Jones JW et al (2005) Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin region of Peru. J Med Entomol 42:891–898. doi:10.1603/0022-2585(2005)042[0891:IOVFMD]2.0.CO;2

    CAS  CrossRef  PubMed  Google Scholar 

  16. Acuff VR (1976) Trap biases influencing mosquito collections. Mosq News 36:51–53

    Google Scholar 

  17. Hoyos-López R, Uribe Soto SI, Rúa-Uribe G, Gallego-Gómez JC (2015) Molecular identification of Saint Louis encephalitis virus genotype IV in Colombia. Mem Inst Oswaldo Cruz 110:719–725. doi:10.1590/0074-02760280040

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Hoyos-López R, Uribe Soto SI, Gallego-Gómez JC (2015) Evolutionary relationships of West Nile virus detected in mosquitoes from a migratory bird zone of Colombian Caribbean. Virol J 12:80. doi:10.1186/s12985-015-0310-8

    CrossRef  Google Scholar 

  19. Vázquez A, Sánchez-Seco M-P, Palacios G et al (2012) Novel flaviviruses detected in different species of mosquitoes in Spain. Vector Borne Zoonotic Dis 12:223–229. doi:10.1089/vbz.2011.0687

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Sánchez-Seco MP, Rosario D, Domingo C et al (2005) Generic RT-nested-PCR for detection of flaviviruses using degenerated primers and internal control followed by sequencing for specific identification. J Virol Methods 126:101–109. doi:10.1016/j.jviromet.2005.01.025

    CrossRef  PubMed  Google Scholar 

  21. Calzolari M, Zé-Zé L, Růžek D et al (2012) Detection of mosquito-only flaviviruses in Europe. J Gen Virol 93:1215–1225. doi:10.1099/vir.0.040485-0

    CAS  CrossRef  PubMed  Google Scholar 

  22. Ritchie SA, van den Hurk AF, Zborowski P et al (2007) Operational trials of remote mosquito trap systems for Japanese encephalitis virus surveillance in the Torres Strait, Australia. Vector Borne Zoonotic Dis 7:497–506. doi:10.1089/vbz.2006.0643

    CrossRef  PubMed  Google Scholar 

  23. Ritchie SA, Cortis G, Paton C et al (2013) A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J Med Entomol 50:185–194. doi:10.1603/ME12112

    CrossRef  PubMed  Google Scholar 

  24. Hall-Mendelin S, Ritchie SA, Johansen CA et al (2010) Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc Natl Acad Sci 107:11255–11259. doi:10.1073/pnas.1002040107

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Ramesh D, Muniaraj M, Samuel PP et al (2015) Seasonal abundance & role of predominant Japanese encephalitis vectors Culex tritaeniorhynchus & Cx. gelidus Theobald in Cuddalore district, Tamil Nadu. Indian J Med Res 142:23. doi:10.4103/0971-5916.176607

    CAS  Google Scholar 

  26. Mitchell CJ, Darsie RF Jr, Monath TP, Sabattini MS, Daffner J (1985) The use of an animal-baited net trap for collecting mosquitoes during western equine encephalitis investigations in Argentina. J Am Mosq Control Assoc 1:43–47

    CAS  PubMed  Google Scholar 

  27. Johnson BJ, Kerlin T, Hall-Mendelin S et al (2015) Development and field evaluation of the sentinel mosquito arbovirus capture kit (SMACK). Parasit Vectors 8:509. doi:10.1186/s13071-015-1114-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Pezzin A, Sy V, Puggioli A et al (2016) Comparative study on the effectiveness of different mosquito traps in arbovirus surveillance with a focus on WNV detection. Acta Trop 153:93–100. doi:10.1016/j.actatropica.2015.10.002

    CrossRef  PubMed  Google Scholar 

  29. Drago A, Marini F, Caputo B et al (2012) Looking for the gold standard: assessment of the effectiveness of four traps for monitoring mosquitoes in Italy. J Vector Ecol 37:117–123. doi:10.1111/j.1948-7134.2012.00208.x

    CrossRef  PubMed  Google Scholar 

  30. L’Ambert G, Ferré JB, Schaffner F, Fontenille D (2012) Comparison of different trapping methods for surveillance of mosquito vectors of West Nile virus in Rhône Delta, France. J Vector Ecol 37:269–275. doi:10.1111/j.1948-7134.2012.00227.x

    CrossRef  PubMed  Google Scholar 

  31. Panella NA, Crockett RJK, Biggerstaff BJ, Komar N (2016) Novel device for collecting resting mosquitoes. J Am Mosq Control Assoc 27:323–325. doi:10.2987/09-5900.1

    CrossRef  Google Scholar 

  32. Williams GM, Gingrich JB (2007) Comparison of light traps, gravid traps, and resting boxes for West Nile virus surveillance. J Vector Ecol 32:285–291

    CrossRef  PubMed  Google Scholar 

  33. van den Hurk AF, Hall-Mendelin S, Townsend M, Kurucz N, Edwards J, Ehlers G, Rodwell C, Moore FA, McMahon JL, Northill JA, Simmons RJ, Cortis G, Melville L, Whelan PI, Ritchie SA (2014) Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations. Vector Borne Zoonotic Dis 14:66–73

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan David Rodas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Paternina, L.E., Rodas, J.D. (2018). Sampling Design and Mosquito Trapping for Surveillance of Arboviral Activity. In: Salvato, M. (eds) Hemorrhagic Fever Viruses. Methods in Molecular Biology, vol 1604. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6981-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6981-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6980-7

  • Online ISBN: 978-1-4939-6981-4

  • eBook Packages: Springer Protocols