Skip to main content

Future Approaches to DNA Vaccination Against Hemorrhagic Fever Viruses

  • Protocol
  • First Online:
Hemorrhagic Fever Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1604))

  • 1879 Accesses

Abstract

To date, there is no protective vaccine for Ebola virus infection. Safety concerns have prevented the use of live-attenuated vaccines, and forced researchers to examine new vaccine formulations. DNA vaccination is an attractive method for inducing protective immunity to a variety of pathogens, but the low immunogenicity seen in larger animals and humans has hindered its usage. Various approaches have been used to improve the immunogenicity of DNA vaccines, but the most successful, and widespread, is electroporation. Of increasing interest is the use of molecular adjuvants to produce immunomodulatory signals that can both amplify and direct the immune response. When combined, these approaches have the possibility to push DNA vaccination into the forefront of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB (2010) Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155:2083–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feldmann H, Geisbert TW (2011) Ebola haemorrhagic fever. Lancet 377:849–862

    Article  PubMed Central  Google Scholar 

  3. Hart MK (2003) Vaccine research efforts for filoviruses. Int J Parasitol 33:583–595

    Article  CAS  PubMed  Google Scholar 

  4. Hevey M, Negley D, VanderZanden L, Tammariello RF, Geisbert J, Schmaljohn C, Smith JF, Jahrling PB, Schmaljohn AL (2001) Marburg virus vaccines: comparing classical and new approaches. Vaccine 20:586–593

    Article  CAS  PubMed  Google Scholar 

  5. Wilson JA, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn AL, Hart MK (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287:1664–1666

    Article  CAS  PubMed  Google Scholar 

  6. Dye JM, Herbert AS, Kuehne AI, Barth JF, Muhammad MA, Zak SE, Ortiz RA, Prugar LI, Pratt WD (2012) Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc Natl Acad Sci U S A 109:5034–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marzi A, Yoshida R, Miyamoto H, Ishijima M, Suzuki Y, Higuchi M, Matsuyama Y, Igarashi M, Nakayama E, Kuroda M, Saijo M, Feldmann F, Brining D, Feldmann H, Takada A (2012) Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLoS One 7:e36192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu X, Audet J, Wong G, Pillet S, Bello A, Cabral T, Strong JE, Plummer F, Corbett CR, Alimonti JB, Kobinger GP (2012) Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med 4:138ra81. doi:10.1126/scitranslmed.3003876

    Article  PubMed  Google Scholar 

  9. Warfield KL, Olinger G, Deal EM, Swenson DL, Bailey M, Negley DL, Hart MK, Bavari S (2005) Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. J Immunol 175:1184–1191

    Article  CAS  PubMed  Google Scholar 

  10. Raymond J, Bradfute S, Bray M (2011) Filovirus infection of STAT-1 knockout mice. J Infect Dis 204(Suppl 3):S986–S990

    Article  CAS  PubMed  Google Scholar 

  11. Roy MJ, Wu MS, Barr LJ, Fuller JT, Tussey LG, Speller S, Culp J, Burkholder JK, Swain WF, Dixon RM, Widera G, Vessey R, King A, Ogg G, Gallimore A, Haynes JR, Heydenburg Fuller D (2000) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764–778

    Article  CAS  PubMed  Google Scholar 

  12. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD Jr (1996) DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 2:1122–1128

    Article  CAS  PubMed  Google Scholar 

  13. Ledgerwood JE, Hu Z, Gordon IJ, Yamshchikov G, Enama ME, Plummer S, Bailer R, Pearce MB, Tumpey TM, Koup RA, Mascola JR, Nabel GJ, Graham BS, Vrc and Teams VRCS (2012) Influenza virus h5 DNA vaccination is immunogenic by intramuscular and intradermal routes in humans. Clin Vaccine Immunol 19:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN (1998) Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188:1075–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171. doi:10.1038/nbt0298-168

    Article  CAS  PubMed  Google Scholar 

  16. Abdulhaqq SA, Weiner DB (2008) DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 42:219–232

    Article  CAS  PubMed  Google Scholar 

  17. Laddy DJ, Weiner DB (2006) From plasmids to protection: a review of DNA vaccines against infectious diseases. Int Rev Immunol 25:99–123

    Article  CAS  PubMed  Google Scholar 

  18. Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB (2013) Synthetic DNA vaccines: improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front Immunol 4:354

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aguiar JC, Hedstrom RC, Rogers WO, Charoenvit Y, Sacci JB Jr, Lanar DE, Majam VF, Stout RR, Hoffman SL (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20:275–280

    Article  CAS  PubMed  Google Scholar 

  20. Choi AH, Smiley K, Basu M, McNeal MM, Shao M, Bean JA, Clements JD, Stout RR, Ward RL (2007) Protection of mice against rotavirus challenge following intradermal DNA immunization by Biojector needle-free injection. Vaccine 25:3215–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hartikka J, Bozoukova V, Ferrari M, Sukhu L, Enas J, Sawdey M, Wloch MK, Tonsky K, Norman J, Manthorpe M, Wheeler CJ (2001) Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens. Vaccine 19:1911–1923

    Article  CAS  PubMed  Google Scholar 

  22. Reyes L, Hartikka J, Bozoukova V, Sukhu L, Nishioka W, Singh G, Ferrari M, Enas J, Wheeler CJ, Manthorpe M, Wloch MK (2001) Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization. Vaccine 19:3778–3786

    Article  CAS  PubMed  Google Scholar 

  23. Sedegah M, Rogers WO, Belmonte M, Belmonte A, Banania G, Patterson NB, Rusalov D, Ferrari M, Richie TL, Doolan DL (2010) Vaxfectin enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 28:3055–3065

    Article  CAS  PubMed  Google Scholar 

  24. Smith LR, Wloch MK, Ye M, Reyes LR, Boutsaboualoy S, Dunne CE, Chaplin JA, Rusalov D, Rolland AP, Fisher CL, Al-Ibrahim MS, Kabongo ML, Steigbigel R, Belshe RB, Kitt ER, Chu AH, Moss RB (2010) Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 28:2565–2572

    Article  CAS  PubMed  Google Scholar 

  25. Alexakis T, Boadi DK, Quong D, Groboillot A, O'Neill I, Poncelet D, Neufeld RJ (1995) Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application. Appl Biochem Biotechnol 50:93–106

    Article  CAS  PubMed  Google Scholar 

  26. Herrmann JE, Chen SC, Jones DH, Tinsley-Bown A, Fynan EF, Greenberg HB, Farrar GH (1999) Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 259:148–153

    Article  CAS  PubMed  Google Scholar 

  27. Kaur R, Rauthan M, Vrati S (2004) Immunogenicity in mice of a cationic microparticle-adsorbed plasmid DNA encoding Japanese encephalitis virus envelope protein. Vaccine 22:2776–2782

    Article  CAS  PubMed  Google Scholar 

  28. Otten GR, Schaefer M, Doe B, Liu H, Srivastava I, Megede J, Kazzaz J, Lian Y, Singh M, Ugozzoli M, Montefiori D, Lewis M, Driver DA, Dubensky T, Polo JM, Donnelly J, O'Hagan DT, Barnett S, Ulmer JB (2005) Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J Virol 79:8189–8200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, He XW, Jiang L, Ren D, He Y, Li DA, Sun SH (2006) Enhanced immunogenicity of microencapsulated multiepitope DNA vaccine encoding T and B cell epitopes of foot-and-mouth disease virus in mice. Vaccine 24:2017–2026

    Article  CAS  PubMed  Google Scholar 

  30. Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25:1316–1327

    Article  CAS  PubMed  Google Scholar 

  31. Szecsi J, Gabriel G, Edfeldt G, Michelet M, Klenk HD, Cosset FL (2009) DNA vaccination with a single-plasmid construct coding for viruslike particles protects mice against infection with a highly pathogenic avian influenza A virus. J Infect Dis 200:181–190

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John J. Suschak or Connie S. Schmaljohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Suschak, J.J., Schmaljohn, C.S. (2018). Future Approaches to DNA Vaccination Against Hemorrhagic Fever Viruses. In: Salvato, M. (eds) Hemorrhagic Fever Viruses. Methods in Molecular Biology, vol 1604. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6981-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6981-4_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6980-7

  • Online ISBN: 978-1-4939-6981-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics