Global Spread of Hemorrhagic Fever Viruses: Predicting Pandemics

  • Jean-Paul GonzalezEmail author
  • Marc Souris
  • Willy Valdivia-Granda
Part of the Methods in Molecular Biology book series (MIMB, volume 1604)


As successive epidemics have swept the world, the scientific community has quickly learned from them about the emergence and transmission of communicable diseases. Epidemics usually occur when health systems are unprepared. During an unexpected epidemic, health authorities engage in damage control, fear drives action, and the desire to understand the threat is greatest. As humanity recovers, policy-makers seek scientific expertise to improve their “preparedness” to face future events.

Global spread of disease is exemplified by the spread of yellow fever from Africa to the Americas, by the spread of dengue fever through transcontinental migration of mosquitos, by the relentless influenza virus pandemics, and, most recently, by the unexpected emergence of Ebola virus, spread by motorbike and long haul carriers. Other pathogens that are remarkable for their epidemic expansions include the arenavirus hemorrhagic fevers and hantavirus diseases carried by rodents over great geographic distances and the arthropod-borne viruses (West Nile, chikungunya and Zika) enabled by ecology and vector adaptations. Did we learn from the past epidemics? Are we prepared for the worst?

The ultimate goal is to develop a resilient global health infrastructure. Besides acquiring treatments, vaccines, and other preventive medicine, bio-surveillance is critical to preventing disease emergence and to counteracting its spread. So far, only the western hemisphere has a large and established monitoring system; however, diseases continue to emerge sporadically, in particular in Southeast Asia and South America, illuminating the imperfections of our surveillance. Epidemics destabilize fragile governments, ravage the most vulnerable populations, and threaten the global community.

Pandemic risk calculations employ new technologies like computerized maintenance of geographical and historical datasets, Geographic Information Systems (GIS), Next Generation sequencing, and Metagenomics to trace the molecular changes in pathogens during their emergence, and mathematical models to assess risk. Predictions help to pinpoint the hot spots of emergence, the populations at risk, and the pathogens under genetic evolution. Preparedness anticipates the risks, the needs of the population, the capacities of infrastructure, the sources of emergency funding, and finally, the international partnerships needed to manage a disaster before it occurs. At present, the world is in an intermediate phase of trying to reduce health disparities despite exponential population growth, political conflicts, migration, global trade, urbanization, and major environmental changes due to global warming. For the sake of humanity, we must focus on developing the necessary capacities for health surveillance, epidemic preparedness, and pandemic response.

Key words

Viral hemorrhagic fever Pandemic Global biosecurity Predicting epidemic risk (i.e., pathogenic threat and vulnerability) 



W.A. Valdivia-Granda has been funded by the Department of Homeland Security and the Department of Defense. We are greatfull to Sarah Cheeseman Barthel, Director, Data Acquisition & Management Metabiota, Inc., for her review and input of the section on “global surveillance and data collection.”


  1. 1.
    Dawson PM et al (2015) Epidemic predictions in an imperfect world: modelling disease spread with partial data. Proc R Soc B 282(1808):20150205CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Debré P, Gonzalez JP (2013) Vie et mort des epidémies. O J Med, p 285Google Scholar
  3. 3.
    Beeching NJ, Dance DAB, Miller ARO, Spencer RC (2002) Biological warfare and bioterrorism. Br Med J 324(7333):336–339CrossRefGoogle Scholar
  4. 4.
    Thucydides (2016) The history of the Peloponnesian War (english trans. by Richard Crawley). The Internet classics archive.
  5. 5.
    Biraben JN (1995) Les maladies en Europe: équilibre et ruptures de la pathocénose. In: MD Grmek (ed) Histoire de la pensée médicale en Occident, t.1, Seuil, 1995, p. 283–310.Google Scholar
  6. 6.
    Berche P (2012) Faut-il encore avoir peur de la grippe. Histoire des pandémies, Odile Jacob 2012:80–81Google Scholar
  7. 7.
    Littman RJ, Littman ML (1973) Galen and the Antonine plague author(s). The Am Jof Philol 94(3):243–255CrossRefGoogle Scholar
  8. 8.
    Grmek MD (1997) Histoire de la Pensée Médicale en occident—tome 2, de la renaissance aux Lumières. Le Seuil, ParisGoogle Scholar
  9. 9.
    Fenner F (1988) Smallpox and its eradication (history of international public health, no 6). World Health Organization, GenevaGoogle Scholar
  10. 10.
    Stanley et al. (2010) The smallpox pandemic of 1870–1874.Google Scholar
  11. 11.
    Simmons BJ, Falto-Aizpurua LA, Griffith RD, Nouri K (2015) Smallpox: 12,000 years from plagues to eradication: a dermatologic ailment shaping the face of society. JAMA Dermatol 151(5):521. doi: 10.1001/jamadermatol.2014.4812 CrossRefPubMedGoogle Scholar
  12. 12.
    Ferguson NM et al (2006) Strategies for mitigating an influenza pandemic. Nature 442(7101):448–452CrossRefPubMedGoogle Scholar
  13. 13.
    Gubler DJ (2011) Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop Med Health 39(4 Suppl):3–11. doi: 10.2149/tmh.2011-S05 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hughes JM (2004) SARS: an emerging global microbial threat. Trans Am Clin Climatol Assoc 115:361–372. discussion 372–374PubMedPubMedCentralGoogle Scholar
  15. 15.
    Valdano E et al (2015) Predicting epidemic risk from past temporal contact data. PLoS Comput Biol 11(3):1004152CrossRefGoogle Scholar
  16. 16.
    Bellan SE, Pulliam JR, Dushoff J, Meyers LA (2014) Ebola control: effect of asymptomatic infection and acquired immunity. Lancet 384(9953):1499–1500. doi: 10.1016/S0140-6736(14)61839-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Akerlund E, Prescott J, Tampellini L (2015) Shedding of Ebola virus in an asymptomatic pregnant woman. N Engl J Med 372(25):2467–2469. doi: 10.1056/NEJMc1503275 CrossRefPubMedGoogle Scholar
  18. 18.
    Wauquier N, Bangura J, Moses L, Humarr Khan S, Coomber M, Lungay V, Gbakie M, Sesay MS, Gassama IA, Massally JL, Gbakima A, Squire J, Lamin M, Kanneh L, Yillah M, Kargbo K, Roberts W, Vandi M, Kargbo D, Vincent T, Jambai A, Guttieri M, Fair J, Souris M, Gonzalez JP (2015) Understanding the emergence of Ebola virus disease in sierra leone: stalking the virus in the threatening wake of emergence. PLoS Curr 2015; 7:pii: ecurrents.outbreaks.9a6530ab7bb9096b34143230ab01cdef. doi: 10.1371/currents.outbreaks.9a6530ab7bb9096b34143230ab01cdef
  19. 19.
    Spengler JR, Ervin ED, Towner JS, Rollin PE, Nichol ST (2016) Perspectives on West Africa Ebola virus disease outbreak, 2013–2016. Emerg Infect Dis 22(6):956–963. doi: 10.3201/eid2206.160021 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reiter P (1998) Aedes alpobictus and the world trade in used tires, 1988–1995: the shape of things to come? J Am Mosq Control Assoc 14:83–94PubMedGoogle Scholar
  21. 21.
    Gonzalez JP, Prugnolle F, Leroy E (2013) Men, primates, and germs: an ongoing affair. Curr Top Microbiol Immunol 365:337–353. doi: 10.1007/82_2012_304 PubMedGoogle Scholar
  22. 22.
    Yashina LN, Abramov SA, Gutorov VV, Dupal TA, Krivopalov AV, Panov VV, Danchinova GA, Vinogradov VV, Luchnikova EM, Hay J, Kang HJ, and Yanagihara R (2010) Seewis virus: phylogeography of a Shrew-Borne hantavirus in Siberia, Russia. Vector Borne Zoonotic Dis 10(6):585–591. doi: 10.1089/vbz. 2009.0154 PMCID: PMC2979336
  23. 23.
    Gonzalez JP (1996) Coevolution of rodent and viruses: arenaviruses and hantaviruses. In: M. Ali Ozcel (ed) New dimension in parasitology. Acta Parasitol Turcica 20(Supp 1):617–638Google Scholar
  24. 24.
    Gonzalez JP, Jean MD (1999) The arenavirus and rodent coevolution process: a global view of a theory. In: JF Saluzzo, B Dodet (eds) Factors in the Emergence and control of rodent-borne diseases. Elsevier, Paris, pp 39–42Google Scholar
  25. 25.
    Drexler JF, Seelen A, Corman VM, Fumie Tateno A, Cottontail V, Melim Zerbinati R, Gloza-Rausch F, Klose S, Adu-Sarkodie Y, Oppong SK, EKV K, Osterman A, Rasche A, Adam A, Müller MA, Ulrich RG, Leroy EM, Lukashev AN, Drosten C (2012) Bats worldwide carry hepatitis E virus-related viruses that form a putative novel genus within the family Hepeviridae. J Virol 86(17):9134–9147. doi: 10.1128/JVI.00800-12 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grard G, Fair JN, Lee D, Slikas E, Steffen I, Muyembe JJ, Sittler T, Veeraraghavan N, Ruby JG, Wang C, Makuwa M, Mulembakani P, Tesh RB, Mazet J, Rimoin AW, Taylor T, Schneider BS, Simmons G, Delwart E, Wolfe ND, Chiu CY, Leroy EM (2012) A novel rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathog 8(9):1002924CrossRefGoogle Scholar
  27. 27.
    Federal Select Agent program: Select Agent and toxins list. Accessed Aug 2016
  28. 28.
    WHO recommended surveillance standards WHO/CDS/CSR/ISR/99.2 Accessed Aug 2016
  29. 29.
    Paessler S, Walker DH (2013) Pathogenesis of the viral hemorrhagic fevers. Annu Rev Pathol 8:411–440. doi: 10.1146/annurev-pathol-020712-164041 CrossRefPubMedGoogle Scholar
  30. 30.
    Oldstone M (2009) Viruses, plagues, and history: past, present and future. Oxford University Press, Oxford, pp 102–104Google Scholar
  31. 31.
    WHO (2014) Yellow fever fact sheet N°100. World Health Organization, GenevaGoogle Scholar
  32. 32.
    Garske T, Van Kerkhove MD, Yactayo S, Ronveaux O, Lewis RF et al (2014) Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med 11(5):e1001638. doi: 10.1371/journal.pmed.1001638 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gubler DJ (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27(5):319–330CrossRefPubMedGoogle Scholar
  34. 34.
    Grobbelaar AA, Weyer J, Moolla N, Jansen-van-Vuren P, Moises F, Paweska JT (2016) Resurgence of yellow fever in Angola, 2015–2016. Emerg Infect Dis 22(10):1854–1855. doi: 10.3201/eid2210.160818 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simons H, Patel D (2016) International health regulations in practice: focus on yellow fever and poliomyelitis. Hum Vaccin Immunother 12(10):2690–2693CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Burki T (2016) Yellow fever in Africa: a disaster waiting to happen. Lancet Infect Dis 16(8):896–897. doi: 10.1016/S1473-3099(16)30224-9 CrossRefPubMedGoogle Scholar
  37. 37.
    Gubler DJ, Clark GG (1995) Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1(2):55–57CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Delaporte (1874) Rapp. au ministre de la marine. J offic 2 avr 1874, p. 2546, 2e colGoogle Scholar
  39. 39.
    LeDuc JW, Esteves K, Gratz NG (2004) Dengue and dengue haemorrhagic fever. In: Murray CJ, Lopez AD, Mathers CD (eds) The global epidemiology of infectious diseases, Global burden of disease and injury series, vol 4. World Health Organization, Geneva, pp 219–242Google Scholar
  40. 40.
    Gubler DJ (1988) Dengue. In: Monath TPM (ed) Epidemiology of arthropod-borne viral disease. CRC Press, Boca Raton (FL), pp 223–260Google Scholar
  41. 41.
    Halstead SB (1992) The XXth century dengue pandemic: need for surveillance and research. Rapp Trimest Statist Sanit Mondo 45:292–298Google Scholar
  42. 42.
    Gubler DJ, Trent DW (1994) Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis 2:383–393Google Scholar
  43. 43.
    Siegert R, Shu HL, Slenczka W, Peters D, Müller G (2009) Zur Ätiologie einer unbekannten, von Affen ausgegangenen menschlichen Infektionskrankheit. Deutsch Med Wochensch 92(51):2341–2343. doi: 10.1055/s-0028-1106144 CrossRefGoogle Scholar
  44. 44.
    Towner JS, Amman BR, Sealy TK, Carroll SAR, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PB, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5(7):1000536CrossRefGoogle Scholar
  45. 45.
    Paweska JT, Jansen-Van-Vuren P, Masumu J, Leman PA, Grobbelaar AA, Birkhead M, Clift S, Swanepoel R, Kemp A (2012) Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with vero cells-adapted hogan strain of Marburg virus. PLoS One 7(9):45479. doi: 10.1371/journal.pone.0045479 CrossRefGoogle Scholar
  46. 46.
    Jean-Paul G, Herbreteau V, Morvan J, Leroy E (2005) Ebola virus circulation in. Africa: a balance between clinical expression and epidemiological silence. Bull Soc Pathol Exotiq 98(3):210–217Google Scholar
  47. 47.
    Leroy EM, Gonzalez JP, Baize S (2011) Ebola and Marburg haemorrhagic fever viruses: major scientific advances, but a relatively minor public health threat for Africa. Clin Microbiol Infect 17(7):964–976CrossRefPubMedGoogle Scholar
  48. 48.
    Gostin LO, Lucey D, Phelan A (2014) The Ebola epidemic: a global health emergency. JAMA 312(11):1095–1096. doi: 10.1001/jama.2014.11176 CrossRefPubMedGoogle Scholar
  49. 49.
    Kulzer P, Schäfer RM, Heidland A (1993) Hantavirus infections 1993: endemic or unrecognized pandemic? Dtsch Med Wochenschr 118(42):1546–1546PubMedGoogle Scholar
  50. 50.
    Johnson KM (2001) Hantaviruses: history and overview. Curr Top Microbiol Immunol 256(256):1–14. doi: 10.1007/978–3–642-56753-7_1 PubMedGoogle Scholar
  51. 51.
    Gonzalez JP, McCormick JB, Baudon D, Gautun JP, Meunier DY, Dournon E, Georges AJ (1984) Serological evidence for Hantaan-related virus in Africa. Lancet 2:1036–1037CrossRefPubMedGoogle Scholar
  52. 52.
    Klempa B, Witkowski PT, Auste B, Koivogui L, Fichet-Calvet E, Strecker T, Ter Meulen J, Krüger DH (2012) Sangassou virus, the first hantavirus isolate from Africa, displays genetic and functional properties distinct from those of other murinae-associated hantaviruses. J Virol 86(7):3819–3827. doi: 10.1128/JVI.05879-11 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Radoshitzky SR, Bào Y, Buchmeier MJ, Charrel RN, Clawson AN, Clegg CS, DeRisi JL, Emonet S, Gonzalez JP, Kuhn JH, Lukashevich IS, Peters CJ, Romanowski V, Salvato MS, Stenglein MD, de la Torre JC (2015) Past, present, and future of arenavirus taxonomy. Arch Virol 160(7):1851–1874CrossRefPubMedGoogle Scholar
  54. 54.
    Salazar-Bravo J, Dragoo JW, Bowen MD, Peters CJ, Ksiazek TG, Yates TL (2002) Natural nidality in Bolivian hemorrhagic fever and the systematics of the reservoir species. Infect Genet Evol 1(3):191–199CrossRefPubMedGoogle Scholar
  55. 55.
    Medlock JM, Hansford KM, Bormane A et al (2013) Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors 6:1. doi: 10.1186/1756-3305-6-1 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Spengler JR, Bergeron É, Rollin PE (2016) Seroepidemiological studies of Crimean-Congo hemorrhagic fever virus in domestic and wild animals. PLoS Negl Trop Dis 10(1):e0004210. doi: 10.1371/journal.pntd.0004210 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ergonul O (2012) Crimean-Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol 2:215–220. doi: 10.1016/j.coviro.2012.03.001 CrossRefPubMedGoogle Scholar
  58. 58.
    Nanyingi MO, Munyua P, Kiama SG, Muchemi GM, Thumbi SM, Bitek AO, Bett B, Muriithi RM, Njenga MK (2015) A systematic review of rift valley fever epidemiology 1931–2014. Infect Ecol Epidemiol 5:28024CrossRefPubMedGoogle Scholar
  59. 59.
    Soumahoro MK, Boelle PY, Gaüzere BA, Atsou K, Pelat C, Lambert B, La Ruche G, Gastellu-Etchegorry M, Renault P, Sarazin M, Yazdanpanah Y, Flahault A, Malvy D, Hanslik T (2011) The chikungunya epidemic on La Réunion Island in 2005–2006: a cost-of-illness study. PLoS Negl Trop Dis 5(6):e1197. doi: 10.1371/journal.pntd.0001197 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    National Academies of Sciences, Engineering, and Medicine (2016) Global health risk framework: pandemic financing: workshop summary. The National Academies Press, Washington, DC. doi: 10.17226/21855.
  61. 61.
    Beavogui M and Madsbjerg S. African risk capacity. Executive perspective: outbreak and epidemic insurance, new solution to an old problem. The Rockefeller Foundation, 27 Sept 2016. Accessed Aug 2016
  62. 62.
    Gonzalez JP. UNESCO. From the Ebola river to the Ebola virus disease pandemic: what have we learned? Accessed Aug 2016
  63. 63.
  64. 64.
    Chan EH et al (2011) Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis 5(5):e1206CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gluskin RT, Johansson MA, Santillana M, Brownstein JS (2014) Evaluation of internet-based dengue query data: google dengue trends. PLoS Negl Trop Dis 8(2):e2713. doi: 10.1371/journal.pntd.0002713 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
  67. 67.
    Valdivia-Granda WA (2013) Biosurveillance enterprise for operational awareness, a genomic-based approach for tracking pathogen virulence. Virulence 4(8):745–751CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Valdivia-Granda WA (2010) Bioinformatics for biodefense: challenges and opportunities. Biosec Bioterr Biodef Strat Pract Sci 8(1):69–77CrossRefGoogle Scholar
  69. 69.
    Gallego B et al (2009) Biosurveillance of emerging biothreats using scalable genotype clustering. J Biomed Inform 42(1):66–73CrossRefPubMedGoogle Scholar
  70. 70.
    Ronald D, Fricker J, Banschbach D (2012) Optimizing biosurveillance systems that use threshold-based event detection methods. Inf Fusion 13(2):117–128CrossRefGoogle Scholar
  71. 71.
    Valdivia-Granda W (2012) Biodefense oriented genomic-based pathogen classification systems: challenges and opportunities. J Bioterr Biodef 3(1):2–9Google Scholar
  72. 72.
    Jenkins WO et al. (2012) Biosurveillance observations on BioWatch generation-3 and other federal efforts: testimony before the subcommittees on emergency preparedness, response, and communications and Cybersecurity, infrastructure protection, and security technologies, committee on house homeland security, house of representatives, in testimony GAO-12-994 T. US Govt Accountability Office, Washington, DCGoogle Scholar
  73. 73.
    Jenkins WO, United States. Congress. House (2012) Committee on Homeland Security. Subcommittee on Emergency Preparedness Response and Communications., United States. Congress. House. Committee on Homeland Security. Subcommittee on Cybersecurity Infrastructure Protection and Security Technologies., United States. Government Accountability Office: Biosurveillance observations on BioWatch Generation-3 and other federal efforts: testimony before the Subcommittees on Emergency Preparedness, Response, and Communications and Cybersecurity, Infrastructure Protection, and Security Technologies, Committee on House Homeland Security, House of Representatives. In: Testimony GAO-12-994 T. U.S. Govt. Accountability Office, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jean-Paul Gonzalez
    • 1
    • 2
    Email author
  • Marc Souris
    • 3
  • Willy Valdivia-Granda
    • 4
  1. 1.Kansas State Univeristy-Center of Excellence for Emerging Zoonotic Animal DiseasesManhattan, KansasUSA
  2. 2.Health for Development, Inc.ParisFrance
  3. 3.IRD, Laos and Cambodia RepresentativeVientianeLao People’s Democratic Republic
  4. 4.Orion Integrated BiosciencesNew RochelleUSA

Personalised recommendations