Skip to main content

Functional Viability: Measurement of Synaptic Vesicle Pool Sizes

  • Protocol
  • First Online:
Book cover Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

Abstract

Neurons and their function of conveying information across a chemical synapse are highly regulated systems. Impacts on their functional viability can occur independently from changes in morphology. Here we describe a method to assess the size of synaptic vesicle pools using live cell fluorescence imaging and a genetically encoded probe (pHluorin). Assessing functional parameters such as the size of synaptic vesicle pools can be a valuable addition to common assays of neuronal cell viability as they demonstrate that key cellular functions are intact.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6960-9_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan TA, Smith SJ (1995) Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14(5):983–989

    Article  CAS  PubMed  Google Scholar 

  2. Wienisch M, Klingauf J (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9(8):1019–1027

    Article  CAS  PubMed  Google Scholar 

  3. Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 3(7):497–516

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Pinter MJ, Rich MM (2016) Reversible recruitment of a homeostatic reserve pool of synaptic vesicles underlies rapid homeostatic plasticity of quantal content. J Neurosci 36(3):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waters J, Smith SJ (2002) Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses. J Physiol 541(Pt 3):811–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16(6):1197–1207

    Article  CAS  PubMed  Google Scholar 

  7. Wilhelm BG, Groemer TW, Rizzoli SO (2010) The same synaptic vesicles drive active and spontaneous release. Nat Neurosci 13(12):1454–1456

    Article  CAS  PubMed  Google Scholar 

  8. Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4(4):391–395

    Article  CAS  PubMed  Google Scholar 

  9. Jung J, Loy K, Schilling EM et al (2014) The antidepressant fluoxetine mobilizes vesicles to the recycling pool of rat hippocampal synapses during high activity. Mol Neurobiol 49(2):916–930

    Article  CAS  PubMed  Google Scholar 

  10. Tagliatti E, Fadda M, Falace A et al (2016) Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. Elife 5:e10116

    Article  PubMed  PubMed Central  Google Scholar 

  11. Welzel O, Tischbirek CH, Jung J et al (2010) Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 5(10):e13514

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ryan TA, Li L, Chin LS et al (1996) Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol 134(5):1219–1227

    Article  CAS  PubMed  Google Scholar 

  13. Marra V, Burden JJ, Crawford F et al (2014) Ultrastructural readout of functional synaptic vesicle pools in hippocampal slices based on FM dye labeling and photoconversion. Nat Protoc 9(6):1337–1347

    Article  CAS  PubMed  Google Scholar 

  14. Welzel O, Henkel AW, Stroebel AM et al (2011) Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys J 100(3):593–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195

    Article  CAS  PubMed  Google Scholar 

  16. Hua Y, Sinha R, Thiel CS et al (2011) A readily retrievable pool of synaptic vesicles. Nat Neurosci 14(7):833–839

    Article  CAS  PubMed  Google Scholar 

  17. Sankaranarayanan S, De Angelis D, Rothman JE et al (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79(4):2199–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rother M, Brauner JM, Ebert K et al (2014) Dynamic properties of the alkaline vesicle population at hippocampal synapses. PLoS One 9(7):e102723

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Z, Burrone J, Tyler WJ et al (2005) Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc Natl Acad Sci U S A 102(17):6131–6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Groemer TW, Klingauf J (2007) Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat Neurosci 10(2):145–147

    Article  CAS  PubMed  Google Scholar 

  21. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195

    Article  CAS  PubMed  Google Scholar 

  22. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  24. Threadgill R, Bobb K, Ghosh A (1997) Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19(3):625–634

    Article  CAS  PubMed  Google Scholar 

  25. Transfection of mammalian cells by electroporation (2006) Nat Method. 3(1):67–68

    Google Scholar 

  26. Zhang XS, Huang J, Zhan CQ et al (2016) Different influences of lipofection and electrotransfection on in vitro gene delivery to primary cultured cortex neurons. Pain Physician 19(3):189–196

    PubMed  Google Scholar 

  27. Royle SJ, Granseth B, Odermatt B et al (2008) Imaging phluorin-based probes at hippocampal synapses. Methods Mol Biol 457:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia H, Rochefort NL, Chen X et al (2011) In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat Protoc 6(1):28–35

    Article  CAS  PubMed  Google Scholar 

  29. Button KS, Ioannidis JP, Mokrysz C et al (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Else-Kröner-Fresenius Stiftung grant 2012_A35.

J.K.W. performed this work in fulfillment of the requirements for obtaining the degree “Dr. rer. biol. hum.” at the University of Erlangen-Nuremberg.

Supplementary Files

Exemplary MATLAB code for processing a vesicle pool size recording can be found in the GitHub repository available at https://github.com/janawrosch/VesiclePoolSizes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana K. Wrosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wrosch, J.K., Groemer, T.W. (2017). Functional Viability: Measurement of Synaptic Vesicle Pool Sizes. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics