ATM Kinase pp 197-213 | Cite as

Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: Application to Quantification of ATM Kinase Phospho-Signaling

  • Jeffrey R. Whiteaker
  • Lei Zhao
  • Regine M. Schoenherr
  • Jacob J. Kennedy
  • Richard G. Ivey
  • Amanda G. PaulovichEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1599)


Peptide immunoaffinity enrichment coupled with targeted mass spectrometry is a quantitative approach for the robust and reproducible quantification of peptide analytes. The approach is capable of multiplexed quantification of peptides, including posttranslational modifications such as phosphorylation. Anti-peptide antibodies are used to enrich analytes and heavy stable isotope-labeled standards. The enriched peptides are directly measured by multiple reaction monitoring (MRM), a well-characterized quantitative mass spectrometry-based method. Quantification is performed by measuring the analyte (light) peptide response relative to the heavy standard, which is spiked at a known concentration. Here, we describe the methodology for multiplexed measurement of phosphorylated peptides on the ATM kinase and their nonmodified peptide analogs in cellular lysates. The method provides quantitative measurements of phospho-signaling and can be extended to a number of other phosphopeptides and sample types.

Key words

Targeted proteomics DNA damage response Multiplex Quantitation LC/MS 



This work was funded by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the US National Cancer Institute (U24CA160034).


  1. 1.
    Picotti P, Bodenmiller B, Aebersold R (2013) Proteomics meets the scientific method. Nat Methods 10:24–27. doi: 10.1038/nmeth.2291 CrossRefPubMedGoogle Scholar
  2. 2.
    Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10:28–34. doi: 10.1038/nmeth.2309 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Addona TA, Abbatiello SE, Schilling B et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641. doi: 10.1038/nbt.1546 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kennedy JJ, Abbatiello SE, Kim K et al (2014) Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 11:149–155. doi: 10.1038/nmeth.2763 CrossRefPubMedGoogle Scholar
  5. 5.
    Whiteaker JR, Paulovich AG (2011) Peptide immunoaffinity enrichment coupled with mass spectrometry for peptide and protein quantification. Clin Lab Med 31:385–396. doi: 10.1016/j.cll.2011.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Madian AG, Rochelle NS, Regnier FE (2013) Mass-linked immuno-selective assays in targeted proteomics. Anal Chem 85:737–748. doi: 10.1021/ac302071k CrossRefPubMedGoogle Scholar
  7. 7.
    Ackermann BL, Berna MJ (2007) Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers. Expert Rev Proteomics 4:175–186. doi: 10.1586/14789450.4.2.175 CrossRefPubMedGoogle Scholar
  8. 8.
    Boström T, Takanen JO, Hober S (2015) Antibodies as means for selective mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. doi: 10.1016/j.jchromb.2015.10.042 PubMedGoogle Scholar
  9. 9.
    Anderson NL, Anderson NG, Haines LR et al (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3:235–244CrossRefPubMedGoogle Scholar
  10. 10.
    Whiteaker JR, Zhao L, Yan P et al (2015) Peptide immunoaffinity enrichment and targeted mass spectrometry enables multiplex, quantitative pharmacodynamic studies of phospho-signaling. Mol Cell Proteomics 14:2261–2273. doi: 10.1074/mcp.O115.050351 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics (Oxford) 26:966–968. doi: 10.1093/bioinformatics/btq054 CrossRefGoogle Scholar
  12. 12.
    Carr SA, Abbatiello SE, Ackermann BL et al (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13:907–917. doi: 10.1074/mcp.M113.036095 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoofnagle AN, Whiteaker JR, Carr SA et al (2016) Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin Chem 62:48–69. doi: 10.1373/clinchem.2015.250563 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Whiteaker JR, Zhao L, Lin C et al (2012) Sequential multiplexed analyte quantification using peptide immunoaffinity enrichment coupled to mass spectrometry. Mol Cell Proteomics 11:M111.015347. doi: 10.1074/mcp.M111.015347 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao L, Whiteaker JR, Voytovich UJ et al (2015) Antibody-coupled magnetic beads can be reused in immuno-MRM assays to reduce cost and extend antibody supply. J Proteome Res 14:4425–4431. doi: 10.1021/acs.jproteome.5b00290 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mani DR, Abbatiello SE, Carr SA (2012) Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics 13(Suppl 16):9. doi: 10.1186/1471-2105-13-S16-S9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jeffrey R. Whiteaker
    • 1
  • Lei Zhao
    • 1
  • Regine M. Schoenherr
    • 1
  • Jacob J. Kennedy
    • 1
  • Richard G. Ivey
    • 1
  • Amanda G. Paulovich
    • 1
    Email author
  1. 1.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations