Skip to main content

An Integration of Decision Tree and Visual Analysis to Analyze Intracranial Pressure

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1598))

Abstract

In Traumatic Brain Injury (TBI), elevated Intracranial Pressure (ICP) causes severe brain damages due to hemorrhage and swelling. Monitoring ICP plays an important role in the treatment of TBI patients because ICP is considered a strong predictor of neurological outcome and a potentially amenable method to treat patients. However, it is difficult to predict and measure accurate ICP due to the complex nature of patients’ clinical conditions. ICP monitoring for severe TBI patient is a challenging problem for clinicians because traditionally known ICP monitoring is an invasive procedure by placing a device inside the brain to measure pressure. Therefore, ICP monitoring might have a high infection risk and cause medical complications. In here, an ICP monitoring using texture features is proposed to overcome this limitation. The combination of image processing methods and a decision tree algorithm is utilized to estimate ICP of TBI patients noninvasively. In addition, a visual analytics tool is used to conduct an interactive visual factor analysis and outlier detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rassovsky Y, Levi Y, Agranov E, Sela-Kaufman M, Sverdlik A, Vakil E (2015) Predicting long-term outcome following traumatic brain injury (TBI). J Clin Exp Neuropsychol 37(4):354–366

    Article  PubMed  Google Scholar 

  2. Kawoos U, Mugalodi GK, Tofighi MR, Neff S, and Rosen A (2005) A permanently implantable intracranial pressure monitor. In Bioengineering Conference, 2005. Proceedings of the IEEE 31st Annual Northeast

    Google Scholar 

  3. Bigler ED, Blatter DD, Anderson CV, Johnson SC, Gale SD, Hopkins RO, Burnett B (1997) Hippocampal volume in normal aging and traumatic brain injury. Am J Neuroradiol 18:11–23

    CAS  PubMed  Google Scholar 

  4. Fred AM Jr, Philip WW, Julie AL, Charles AK (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353

    Article  Google Scholar 

  5. Jensen C, and LaCourse J (1988) Assessment of intracranial pressure. In Bioengineering Conference, 1988. Proceedings of the 1988 Fourteenth Annual Northeast

    Google Scholar 

  6. Penson R, Allen R (1999) Intracranial hypertension: condition monitoring, simulation and time domain analysis. Eng Sci Educ J 8:33–40

    Article  Google Scholar 

  7. Czosnyka M, Pickard J (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brain Trauma Foundation, American Association of Neurological Surgeons, and Congress of Neurological Surgeons (2007) Guidelines for the management of severe traumatic brain injury. J Neurotrauma 24:i–vi

    Article  Google Scholar 

  9. Basauri L (1997) Intracranial pressure monitoring: cost-benefit analysis of ventricular catheters and fiberoptic systems. Crit Rev Neurosurg 7:165–168

    Article  Google Scholar 

  10. Shapiro S, Bowman R, Callahan J, Wolfla C (1996) The fiberoptic intraparenchymal cerebral pressure monitor in 244 patients. Surg Neurol 45:278–281

    Article  CAS  PubMed  Google Scholar 

  11. Brien MO, Obasanjo O, Chotani R, Williams M, Perl T (1999) Infections in adult patients undergoing intracranial pressure monitoring (ICPM) and/or external cerebrospinal fluid drainage (ECFD). Am J Infect Control 27:217–218

    Article  Google Scholar 

  12. Schmidt B, Klingelhöfer J, Schwarze JJ, Sander D, Wittich I (1997) Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves. Stroke 28:2465–2472

    Article  CAS  PubMed  Google Scholar 

  13. Swiercz M, Mariak Z, Krejza J, Lewko J, Szydlik P (2000) Intracranial pressure processing with artificial neural networks: prediction of ICP trends. Acta Neurochir 142:401–406

    Article  CAS  PubMed  Google Scholar 

  14. Llompart Pou J, Abadal Centellas J, Palmer Sans M, Pérez Bárcena J, Casares Vivas M, Homar Ramírez J, Ibáñez Juvé J (2004) Monitoring midline shift by transcranial color-coded sonography in traumatic brain injury. Intensive Care Med 30:1672–1675

    Article  PubMed  Google Scholar 

  15. George AE, de Leon MJ, Rosenbloom S, Ferris SH, Gentes C, Emmerich M, Kricheff II (1983) Ventricular volume and cognitive deficit: a computed tomographic study. Radiology 149:493–498

    Article  CAS  PubMed  Google Scholar 

  16. Jeong DH, Ziemkiewicz C, Fisher B, Ribarsky W, and Chang R (2009) iPCA: an interactive system for PCA-based visual analytics. In Proceedings of the 11th Eurographics/IEEE—VGTC conference on Visualization, The Eurographs Association & John Wiley & Sons, Ltd., Berlin, Germany

    Google Scholar 

  17. Mir AH, Hanmandlu M, Tandon SN (1995) Texture analysis of CT images. IEEE Eng Med Biol Mag 14:781–786

    Article  Google Scholar 

  18. Chien YP, King-Sun F (1974) Recognition of X-ray picture patterns. IEEE Trans Syst Man Cybern SMC-4:145–156

    Article  Google Scholar 

  19. Najarian K, Splinter R (2005) Biomedical signal and image processing. CRC Press, Taylor & Francis Group, FL

    Google Scholar 

  20. Brigham EO (1988) The fast fourier transform and its applications. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  21. Amirfattahi R (2013) Calculation of computational complexity for Radix-2(p) fast fourier transform algorithms for medical signals. J Med Signals Sens 3:217–224

    PubMed  PubMed Central  Google Scholar 

  22. Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir 138:531–542

    Article  CAS  PubMed  Google Scholar 

  23. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  24. Unser M, Aldroubi A (1996) A review of wavelets in biomedical applications. Proc IEEE 84:626–638

    Article  Google Scholar 

  25. Breiman L, Friedman J, Stone CJ, Olshen RA (1993) Classification and regression trees. Chapman and Hall/CRC, New York

    Google Scholar 

  26. Loh W-Y, Vanichsetakul N (1988) Tree-structured classification via generalized discriminant analysis. J Am Stat Assoc 83:715–725

    Article  Google Scholar 

  27. Hammack BN, Fung KY, Hunsucker SW, Duncan MW, Burgoon MP, Owens GP, Gilden DH (2004) Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler 10:245–260

    Article  CAS  PubMed  Google Scholar 

  28. Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  29. Plassman GE (2005) A survey of singular value decomposition methods and performance comparison of some available serial codes. NASA/CR-2005-213500

    Google Scholar 

  30. Brand M (2006) Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl 415:20–30

    Article  Google Scholar 

  31. Thomas JJ, Kristin AK (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE Computer Society Press, Washington, DC

    Google Scholar 

  32. Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22:85–126

    Article  Google Scholar 

  33. Mohtashemi M, Kleinman K, Yih WK (2007) Multi-syndrome analysis of time series using PCA: A new concept for outbreak investigation. Stat Med 26:5203–5224

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Yeon Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ji, SY., Najarian, K., Huynh, T., Jeong, D.H. (2017). An Integration of Decision Tree and Visual Analysis to Analyze Intracranial Pressure. In: Kobeissy, F., Stevens, Jr., S. (eds) Neuroproteomics. Methods in Molecular Biology, vol 1598. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6952-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6952-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6950-0

  • Online ISBN: 978-1-4939-6952-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics