Skip to main content

Construction of Protein Switches by Domain Insertion and Directed Evolution

  • Protocol
  • First Online:
Synthetic Protein Switches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1596))

Abstract

A protein switch is a protein that changes between inactive (“off”) and active (“on”) states in response to a biomolecule or physical signal. These switches can be created by fusing two domains in such a way that the activity of the output domain is regulated by the input domain’s recognition of an input signal (such as the binding of a molecule, recognition of light). Here, we describe several methods for randomly fusing two domains to create domain insertion libraries from which protein switches can be identified by selections and/or screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright CM, Wright RC, Eshleman JR, Ostermeier M (2011) A protein therapeutic modality founded on molecular regulation. Proc Natl Acad Sci U S A 108(39):16206–16211

    Article  CAS  Google Scholar 

  2. Alicea I, Marvin JS, Miklos AE, Ellington AD, Looger LL, Schreiter ER (2011) Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors. J Mol Biol 414(3):356–369

    Article  CAS  Google Scholar 

  3. Deuschle K, Fehr M, Hilpert M, Lager I, Lalonde S, Looger LL, Okumoto S, Persson J, Schmidt A, Frommer WB (2005) Genetically encoded sensors for metabolites. Cytometry A 64(1):3–9

    Article  Google Scholar 

  4. Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14(9):2304–2314

    Article  CAS  Google Scholar 

  5. Ribeiro LF, Nicholes N, Tullman J, Ribeiro LFC, Fuzo CA, Vieira DS, Furtado GP, Ostermeier M, Ward RJ (2015) Insertion of a xylanase in xylose binding protein results in a xylose-stimulated xylanase. Biotechnol Biofuels 8:118

    Google Scholar 

  6. Dagliyan O, Shirvanyants D, Karginov AV, Ding F, Fee L, Chandrasekaran SN, Freisinger CM, Smolen GA, Huttenlocher A, Hahn KM, Dokholyan NV (2013) Rational design of a ligand-controlled protein conformational switch. Proc Natl Acad Sci U S A 110(17):6800–6804

    Article  CAS  Google Scholar 

  7. Guntas G, Mansell TJ, Kim JR, Ostermeier M (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 102(32):11224–11229

    Article  CAS  Google Scholar 

  8. Tullman J, Guntas G, Dumont M, Ostermeier M (2011) Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnol Bioeng 108(11):2535–2543

    Google Scholar 

  9. Tullman J, Nicholes N, Dumont MR, Ribeiro LF, Ostermeier M (2015) Enzymatic protein switches built from paralogous input domains. Biotechnol Bioeng 9999:1–7

    Google Scholar 

  10. Tullman J, Guntas G, Dumont M, Ostermeier M (2011) Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnol Bioeng 108(11):2535–2543

    Article  CAS  Google Scholar 

  11. Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11(11):1483–1487

    Article  CAS  Google Scholar 

  12. Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336(1):263–273

    Article  CAS  Google Scholar 

  13. Ostermeier M, Guntas G (2003) Engineering a protein molecular switch by combinatorial domain insertion. Abstr Pap Am Chem S 225:U243–U243

    Google Scholar 

  14. Guntas G, Kanwar M, Ostermeier M (2012) Circular permutation in the omega-loop of TEM-1 beta-lactamase results in improved activity and altered substrate specificity. PLoS One 7(4):e35998

    Article  CAS  Google Scholar 

  15. Nicholes N, Date A, Beaujean P, Hauk P, Kanwar M, Ostermeier M (2016) Modular protein switches derived from antibody mimetic proteins. Protein Eng Des Sel 29(2):77–85

    Article  CAS  Google Scholar 

  16. Choi JH, Laurent AH, Hilser VJ, Ostermeier M (2015) Design of protein switches based on an ensemble model of allostery. Nat Commun 6: 6968

    Google Scholar 

  17. Choi JH, Zayats M, Searson PC, Ostermeier M (2016) Electrochemical activation of engineered protein switches. Biotechnol Bioeng 113(2):453–456

    Article  CAS  Google Scholar 

  18. Heins RA, Choi JH, Sohka T, Ostermeier M (2011) In vitro recombination of non-homologous genes can result in gene fusions that confer a switching phenotype to cells. PLoS One 6(11):e27302

    Article  CAS  Google Scholar 

  19. Yu Y, Lutz S (2011) Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol 29(1):18–25

    Article  CAS  Google Scholar 

  20. Bosley AD, Ostermeier M (2005) Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol Eng 22(1–3):57–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ostermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ribeiro, L.F., Warren, T.D., Ostermeier, M. (2017). Construction of Protein Switches by Domain Insertion and Directed Evolution. In: Stein, V. (eds) Synthetic Protein Switches. Methods in Molecular Biology, vol 1596. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6940-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6940-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6938-8

  • Online ISBN: 978-1-4939-6940-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics