Skip to main content

Analysis of Lysosomal pH by Flow Cytometry Using FITC-Dextran Loaded Cells

  • Protocol
  • First Online:
Lysosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1594))

Abstract

The acidic environment of the lysosomal lumen provides an optimal milieu for the acid hydrolases and is also essential for fusion/fission of endo-lysosomal compartments and sorting of cargo. Evidence suggests that maintaining lysosomal acidity is essential to avoid disease. In this chapter, we describe a protocol for analyzing the lysosomal pH in cultured cells using the fluorescent probe fluorescein isothiocyanate (FITC)-dextran together with a dual-emission ratiometric technique suitable for flow cytometry. Fluorescence-labeled dextran is endocytosed and accumulated in the lysosomal compartment. FITC shows a pH-dependent variation in fluorescence when analyzed at maximum emission wavelength and no variation when analyzing at the isosbestic point, thereby the ratio can be used to determine the lysosomal pH. A standard curve is obtained by equilibrating intralysosomal pH with extracellular pH using the ionophore nigericin. The protocol also includes information regarding procedures to induce lysosomal alkalinization and lysosomal membrane permeabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86. doi:10.1146/annurev-physiol-012110-142317

    Article  CAS  PubMed  Google Scholar 

  2. Stransky LA, Forgac M (2015) Amino acid availability modulates vacuolar H+-ATPase assembly. J Biol Chem 290(45):27360–27369. doi:10.1074/jbc.M115.659128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85(21):7972–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75(7):3327–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mauvezin C, Nagy P, Juhasz G, Neufeld TP (2015) Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun 6:7007. doi:10.1038/ncomms8007

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ramsey MS, Fine BS (1972) Chloroquine toxicity in the human eye. Histopathologic observations by electron microscopy. Am J Ophthalmol 73:229–235

    Article  CAS  PubMed  Google Scholar 

  7. Sundelin SP, Terman A (2002) Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS 110(6):481–489

    Article  CAS  PubMed  Google Scholar 

  8. Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18(4):1490–1496. doi:10.1091/mbc.E06-10-0975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kokkonen N, Rivinoja A, Kauppila A, Suokas M, Kellokumpu I, Kellokumpu S (2004) Defective acidification of intracellular organelles results in aberrant secretion of cathepsin D in cancer cells. J Biol Chem 279(38):39982–39988. doi:10.1074/jbc.M406698200

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson C, Roberg K, Grafström RC, Öllinger K (2010) Intrinsic differences in cisplatin sensitivity of head and neck cancer cell lines: correlation to lysosomal pH. Head Neck 32(9):1185–1194

    Article  PubMed  Google Scholar 

  11. Chauhan SS, Liang XJ, Su AW, Pai-Panandiker A, Shen DW, Hanover JA, Gottesman MM (2003) Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br J Cancer 88(8):1327–1334. doi:10.1038/sj.bjc.6600861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, Howell SB (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4(10):1595–1604. doi:10.1158/1535-7163.MCT-05-0102

    Article  CAS  PubMed  Google Scholar 

  13. Bourdenx M, Daniel J, Genin E, Soria FN, Blanchard-Desce M, Bezard E, Dehay B (2016) Nanoparticles restore lysosomal acidification defects: implications for Parkinson and other lysosomal-related diseases. Autophagy 12(3):472–483. doi:10.1080/15548627.2015.1136769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Turk B, Turk V (2009) Lysosomes as "suicide bags" in cell death: myth or reality? J Biol Chem 284(33):21783–21787. doi:10.1074/jbc.R109.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Duve C (1959) Lysosomes, a new group of cytoplasmic particles. In: Hayashi T (ed) Subcellular particles. The Ronald Press Co., New York, pp 128–159

    Google Scholar 

  16. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470(1):35–39

    Article  CAS  PubMed  Google Scholar 

  17. Thiele DL, Lipsky PE (1992) Apoptosis is induced in cells with cytolytic potential by L-leucyl-L-leucine methyl ester. J Immunol 148(12):3950–3957

    CAS  PubMed  Google Scholar 

  18. Johansson AC, Appelqvist H, Nilsson C, Kågedal K, Roberg K, Öllinger K (2010) Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15(5):527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106(9):1127–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bivik C, Larsson P, Kågedal K, Rosdahl I, Öllinger K (2006) UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. J Invest Dermatol 126(5):1119–1127

    Article  CAS  PubMed  Google Scholar 

  21. Nilsson C, Johansson U, Johansson AC, Kågedal K, Öllinger K (2006) Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis 11(7):1149–1159

    Article  CAS  PubMed  Google Scholar 

  22. Stroikin Y, Mild H, Johansson U, Roberg K, Ollinger K (2008) Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes. Age (Dordr) 30(1):31–42. doi:10.1007/s11357-007-9045-9

    Article  CAS  Google Scholar 

  23. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23(16):2881–2890

    Article  CAS  PubMed  Google Scholar 

  24. Geisow MJ (1984) Fluorescein conjugates as indicators of subcellular pH. A critical evaluation. Exp Cell Res 150(1):29–35

    Article  CAS  PubMed  Google Scholar 

  25. Vergne I, Constant P, Lanéelle G (1998) Phagosomal pH determination by dual fluorescence flow cytometry. Anal Biolchem 255(1):127–132

    Article  CAS  Google Scholar 

  26. Reijngoud D, Tager JM (1975) Effect of ionophores and temperature on intralysosomal pH. FEBS Lett 54(1):76–79

    Article  CAS  PubMed  Google Scholar 

  27. Myers BM, Tietz PS, Tarara JE, LaRusso NF (1995) Dynamic measurements of the acute and chronic effects of lysosomotropic agents on hepatocyte lysosomal pH using flow cytometry. Hepatology 22(5):1519–1526

    CAS  PubMed  Google Scholar 

  28. Appelqvist H, Johansson AC, Linderoth E, Johansson U, Antonsson B, Steinfeld R, Kågedal K, Öllinger K (2012) Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of Bid at Phe24, Trp48, and Phe183. Ann Clin Lab Sci 42(3):231–242

    CAS  PubMed  Google Scholar 

  29. Eriksson I, Joosten M, Roberg K, Ollinger K (2013) The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis. Exp Cell Res 319(1):12–20. doi:10.1016/j.yexcr.2012.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Öllinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Eriksson, I., Öllinger, K., Appelqvist, H. (2017). Analysis of Lysosomal pH by Flow Cytometry Using FITC-Dextran Loaded Cells. In: Öllinger, K., Appelqvist, H. (eds) Lysosomes. Methods in Molecular Biology, vol 1594. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6934-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6934-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6932-6

  • Online ISBN: 978-1-4939-6934-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics