Visualizing Endogenous Effector T Cell Egress from the Lymph Nodes

  • Manisha Menon
  • Alexandre P. Benechet
  • Kamal M. KhannaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1591)


Local anatomy of lymphoid tissues during infection has emerged as a critical regulator of immunity; thus, studying the cellular choreography in the context of an intact tissue environment in situ is crucial. Following an infection, the local pathogen-specific T cell migration and the subsequent egress of effector T cells from the draining lymph nodes are important and complex biological processes. The mechanisms that regulate this complex process can now be investigated by directly visualizing T cell dynamics in vivo using intravital two-photon (2P) microscopy. In addition, static whole-mount imaging technique can provide us with a comprehensive assessment of global changes in the distribution of cellular populations within an intact tissue. Thus, in this chapter, we detail methods to visualize the migration and egress of endogenous antigen-specific CD8 T cells following viral infection using two methods—intravital 2P microscopy and multicolor whole-mount in situ tetramer staining.


T cell egress Sphingosine-1-phosphate receptor Intravital microscopy In situ tetramer staining 


  1. 1.
    Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94CrossRefPubMedGoogle Scholar
  2. 2.
    Schulz O, Hammerschmidt SI, Moschovakis GL, Forster R (2016) Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol 34:203–242CrossRefPubMedGoogle Scholar
  3. 3.
    Grigorova IL, Schwab SR, Phan TG, Pham TH, Okada T, Cyster JG (2009) Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat Immunol 10:58–65CrossRefPubMedGoogle Scholar
  4. 4.
    Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28:122–133CrossRefPubMedGoogle Scholar
  5. 5.
    Benechet AP, Menon M, Xu D, Samji T, Maher L, Murooka TT, Mempel TR, Sheridan BS, Lemoine FM, Khanna KM (2016) T cell-intrinsic S1PR1 regulates endogenous effector T-cell egress dynamics from lymph nodes during infection. Proc Natl Acad Sci U S A 113:2182–2187CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mionnet C, Sanos SL, Mondor I, Jorquera A, Laugier JP, Germain RN, Bajenoff M (2011) High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes. Blood 118:6115–6122CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schulz O, Ugur M, Friedrichsen M, Radulovic K, Niess JH, Jalkanen S, Krueger A, Pabst O (2014) Hypertrophy of infected Peyer's patches arises from global, interferon-receptor, and CD69-independent shutdown of lymphocyte egress. Mucosal Immunol 7:892–904PubMedGoogle Scholar
  8. 8.
    Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrancois L (2005) Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6:793–799CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brinkmann V, Cyster JG, Hla T (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 4:1019–1025CrossRefPubMedGoogle Scholar
  10. 10.
    Bannard O, Kraman M, Fearon DT (2009) Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323:505–509CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mempel TR (2010) Single-cell analysis of cytotoxic T cell function by intravital multiphoton microscopy. Methods Mol Biol 616:181–192CrossRefPubMedGoogle Scholar
  12. 12.
    Murooka TT, Mempel TR (2012) Multiphoton intravital microscopy to study lymphocyte motility in lymph nodes. Methods Mol Biol 757:247–257CrossRefPubMedGoogle Scholar
  13. 13.
    Nolz JC, Starbeck-Miller GR, Harty JT (2011) Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy 3:1223–1233CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sarkisyan G, Cahalan SM, Gonzalez-Cabrera PJ, Leaf NB, Rosen H (2012) Real-time differential labeling of blood, interstitium, and lymphatic and single-field analysis of vasculature dynamics in vivo. Am J Physiol Cell Physiol 302:C1460–C1468CrossRefPubMedGoogle Scholar
  15. 15.
    Benechet AP, Menon M, Khanna KM (2014) Visualizing T cell migration in-situ. Front Immunol 5:363CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL (2003) Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Khanna KM, McNamara JT, Lefrancois L (2007) In situ imaging of the endogenous CD8 T cell response to infection. Science 318:116–120CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chiba K, Adachi K (2012) Discovery of fingolimod, the sphingosine 1-phosphate receptor modulator and its application for the therapy of multiple sclerosis. Future Med Chem 4:771–781CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Manisha Menon
    • 1
  • Alexandre P. Benechet
    • 2
  • Kamal M. Khanna
    • 1
    Email author
  1. 1.Department of ImmunologyUniversity of Connecticut HealthFarmingtonUSA
  2. 2.Division of Immunology, Transplantation and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly

Personalised recommendations