Skip to main content

Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

  • 1509 Accesses

Abstract

The stator is an eminent component of the flagellar motor and determines a number of the motor’s properties, such as the rotation-energizing coupling ion (H+ or Na+) or the torque that can be generated. The stator consists of several units located in the cytoplasmic membrane surrounding the flagellar drive shaft. Studies on flagellar motors of several bacterial species have provided evidence that the number as well as the retention time of stators coupled to the motor is highly dynamic and depends on the environmental conditions. Notably, numerous species possess more than a single distinct set of stators. It is likely that the presence of different stator units enables these bacteria to adjust the flagellar motor properties and function to meet the environmental requirements. One of these species is Shewanella oneidensis MR-1 that is equipped with a single polar flagellum and two stator units, the Na+-dependent PomAB and the H+-dependent MotAB. Here, we describe a method to determine stator dynamics by fluorescence microscopy, demonstrating how bacteria can change the composition of an intricate molecular machine according to environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–274

    Article  CAS  PubMed  Google Scholar 

  2. Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701

    Article  CAS  PubMed  Google Scholar 

  3. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  PubMed  Google Scholar 

  4. Stock D, Namba K, Lee LK (2012) Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Curr Opin Biotechnol 23:545–554

    Article  CAS  PubMed  Google Scholar 

  5. Beeby M, Ribardo DA, Brennan CA et al (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 113:1917–1926

    Article  Google Scholar 

  6. Leake MC, Chandler JH, Wadhams GH et al (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  PubMed  Google Scholar 

  7. Reid SW, Leake MC, Chandler JH et al (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A 103:8066–8071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kojima S (2015) Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr Opin Microbiol 28:66–71

    Article  CAS  PubMed  Google Scholar 

  9. Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:809–812

    Article  CAS  PubMed  Google Scholar 

  10. Sowa Y, Rowe AD, Leake MC et al (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    Article  CAS  PubMed  Google Scholar 

  11. Tipping MJ, Steel BC, Delalez NJ et al (2013) Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol Microbiol 87:338–347

    Article  CAS  PubMed  Google Scholar 

  12. Tipping MJ, Delalez NJ, Lim R et al (2013) Load-dependent assembly of the bacterial flagellar motor. MBio 4:e00551-13. doi:10.1128/mBio.00551-13

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A 110:11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukuoka H, Wada T, Kojima S et al (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 71:825–835

    Article  CAS  PubMed  Google Scholar 

  15. Paulick A, Delalez NJ, Brenzinger S et al (2015) Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor. Mol Microbiol 96:993–1001

    Article  CAS  PubMed  Google Scholar 

  16. Paulick A, Koerdt A, Lassak J et al (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850

    Article  CAS  PubMed  Google Scholar 

  17. Thormann KM, Paulick A (2010) Tuning the flagellar motor. Microbiology 156:1275–1283

    Article  CAS  PubMed  Google Scholar 

  18. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  PubMed  Google Scholar 

  19. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  20. Lassak J, Henche AL, Binnenkade L, Thormann KM (2010) ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol 76:3263–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  22. Brenzinger S, Dewenter L, Delalez NJ et al (2016) Mutations targeting the plug-domain of the Shewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions. Mol Microbiol 102:925–938

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai M. Thormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brenzinger, S., Thormann, K.M. (2017). Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1 . In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics