Skip to main content

In Situ Structural Analysis of the Spirochetal Flagellar Motor by Cryo-Electron Tomography

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

The bacterial flagellar motor is a large multi-component molecular machine. Structural determination of such a large complex is often challenging and requires extensive structural analysis in situ. Cryo-electron tomography (cryo-ET) has emerged as a powerful technique that enables us to visualize intact flagellar motors in cells with unprecedented details. Here, we detail the procedure beginning with sample preparation, followed by data acquisition, tomographic reconstruction, sub-tomogram analysis, and ultimately visualization of the intact spirochetal flagellar motor in Borrelia burgdorferi. The procedure is applicable to visualize other molecular machinery in bacteria or other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terashima H, Kojima S, Homma M (2008) Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol 270:39–85

    Article  CAS  PubMed  Google Scholar 

  2. Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A 110:11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu S, Kojima S, Homma M (2013) Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol 4:410

    Article  PubMed  PubMed Central  Google Scholar 

  4. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    Article  CAS  PubMed  Google Scholar 

  5. Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–274

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J, Lloyd SA, Blair DF (1998) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A 95:6436–6441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy GE, Leadbetter JR, Jensen GJ (2006) In situ structure of the complete Treponema primitia flagellar motor. Nature 442:1062–1064

    Article  CAS  PubMed  Google Scholar 

  8. Chen S, Beeby M, Murphy GE et al (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao X, Zhang K, Boquoi T et al (2013) Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc Natl Acad Sci U S A 110:14390–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao X, Norris SJ, Liu J (2014) Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53:4323–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beeby M, Ribardo DA, Brennan CA et al (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 113:E1917–E1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  13. Li X, Mooney P, Zheng S et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mastronarde DN (2007) Fiducial marker and hybrid alignment methods for single- and double-axis tomography. In: Frank J (ed) Electron tomography, 2nd edn. Springer, New York

    Google Scholar 

  15. Morado DR, Hu B, Liu J (2016) Using tomoauto: a protocol for high-throughput automated cryo-electron tomography. J Vis Exp 107:e53608

    Google Scholar 

  16. Agulleiro J-I, Fernandez J-J (2015) Tomo3D 2.0-exploitation of advanced vector extensions (AVX) for 3D reconstruction. J Struct Biol 189:147–152

    Article  PubMed  Google Scholar 

  17. Winkler H (2007) 3D reconstruction and processing of volumetric data in cryo-electron tomography. J Struct Biol 157:126–137

    Article  CAS  PubMed  Google Scholar 

  18. Winkler H, Zhu P, Liu J, Ye F, Roux KH, Taylor KA (2009) Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. J Struct Biol 165:64–77

    Article  CAS  PubMed  Google Scholar 

  19. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  20. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  21. Grassucci RA, Taylor D, Frank J (2008) Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Nat Protoc 3:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mastronarde D (2006) Tomographic reconstruction with the IMOD software package. Microsc Microanal 12(S02):178–179

    Article  Google Scholar 

  23. Zhu S, Takao M, Li N, Sakuma M, Nishino Y, Homma M, Kojima S, Imada K (2014) Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci U S A 111:13523–13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from National Institute of Allergy and Infectious Diseases (NIAID) (R01AI087946, R21AI113014), and Welch Foundation (AU-1714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhu, S., Qin, Z., Wang, J., Morado, D.R., Liu, J. (2017). In Situ Structural Analysis of the Spirochetal Flagellar Motor by Cryo-Electron Tomography. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics