Skip to main content

Structure of the MotA/B Proton Channel

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

Flagellar motors utilize the motive force of protons and other ions as an energy source. To elucidate the mechanisms of ion permeation and torque generation, it is essential to investigate the structure of the motor stator complex; however, the atomic structure of the transmembrane region of the stator has not been determined experimentally. We recently constructed an atomic model structure of the transmembrane region of the Escherichia coli MotA/B stator complex based on previously published disulfide cross-linking and tryptophan scanning mutations. Dynamic permeation by hydronium ions, sodium ions, and water molecules was then observed using steered molecular dynamics simulations, and free energy profiles for ion/water permeation were calculated using umbrella sampling. We also examined the possible ratchet motion of the cytoplasmic domain induced by the protonation/deprotonation cycle of the MotB proton binding site, Asp32. In this chapter, we describe the methods used to conduct these analyses, including atomic structure modeling of the transmembrane region of the MotA/B complex; molecular dynamics simulations in equilibrium and in ion permeation processes; and ion permeation-free energy profile calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen SH, Adler J, Gargus JJ, Hogg RW (1974) Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci U S A 71:1239–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132:278–280

    Article  CAS  Google Scholar 

  3. Dean GE, Macnab RM, Stader J, Matsumura P, Burks C (1984) Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J Bacteriol 159:991–999

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Stader J, Matsumura P, Vacante D, Dean GE, Macnab RM (1986) Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J Bacteriol 166:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–278

    Article  CAS  PubMed  Google Scholar 

  6. Khan S, Dapice M, Reese TS (1988) Effects of mot gene expression on the structure of the flagellar motor. J Mol Biol 202:575–584

    Article  CAS  PubMed  Google Scholar 

  7. Terahara N, Sano M, Ito M (2012) A bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PLoS One 7:e46248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamaguchi S, Fujita H, Ishihara A, Aizawa SI, Macnab RM (1986) Subdivision of flagellar genes of Salmonella-typhimurium into regions responsible for assembly, rotation, and switching. J Bacteriol 166:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enomoto M (1966) Genetic studies of paralyzed mutants in Salmonella. 2. Mapping of 3 mot loci by linkage analysis. Genetics 54:1069–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Asai Y, Yakushi T, Kawagishi I, Homma M (2003) Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463

    Article  CAS  PubMed  Google Scholar 

  11. Zhou JD, Fazzio RT, Blair DF (1995) Membrane topology of the mota protein of Escherichia coli. J Mol Biol 251:237–242

    Article  CAS  PubMed  Google Scholar 

  12. Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF (2004) Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43:35–45

    Article  CAS  PubMed  Google Scholar 

  13. Sharp LL, Zhou JD, Blair DF (1995) Features of Mota proton channel structure revealed by tryptophan-scanning mutagenesis. Proc Natl Acad Sci U S A 92:7946–7950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharp LL, Zhou JD, Blair DF (1995) Tryptophan-scanning mutagenesis of Motb, an integral membrane-protein essential for flagellar rotation in Escherichia coli. Biochemistry 34:9166–9171

    Article  CAS  PubMed  Google Scholar 

  15. Berry RM (1993) Torque and switching in the bacterial flagellar Motor—an electrostatic model. Biophys J 64:961–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elston TC, Oster G (1997) Protein turbines. 1. The bacterial flagellar motor. Biophys J 73:703–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walz D, Caplan SR (2000) An electrostatic mechanism closely reproducing observed behavior in the bacterial flagellar motor. Biophys J 78:626–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050

    Article  CAS  PubMed  Google Scholar 

  19. Demot R, Vanderleyden J (1994) The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains peptidoglycan. Mol Microbiol 12:333–336

    Article  CAS  Google Scholar 

  20. Roujeinikova A (2008) Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc Natl Acad Sci U S A 105:10348–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Neill J, Xie M, Hijnen M, Roujeinikova A (2011) Role of the MotB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 67:1009–1016

    Article  PubMed  Google Scholar 

  22. Reboul CF, Andrews DA, Nahar MF, Buckle AM, Roujeinikova A (2011) Crystallographic and molecular dynamics analysis of loop motions unmasking the peptidoglycan-binding site in stator protein MotB of flagellar motor. PLoS One 6:e18981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C, Minamino T, Homma M, Namba K (2009) Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 73:710–718

    Article  CAS  PubMed  Google Scholar 

  24. Zhu SW, Takao M, Li N, Sakuma M, Nishino Y, Homma M, Kojima S, Imada K (2014) Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci U S A 111:13523–13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yonekura K, Maki-Yonekura S, Homma M (2011) Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation. J Bacteriol 193:3863–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braun TF, Blair DF (2001) Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–13059

    Article  CAS  PubMed  Google Scholar 

  27. Kim EA, Price-Carter M, Carlquist WC, Blair DF (2008) Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change. Biochemistry 47:11332–11339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishihara Y, Kitao A (2015) Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor. Proc Natl Acad Sci U S A 112:7737–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC

    Google Scholar 

  30. Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19:13–25

    Article  CAS  PubMed  Google Scholar 

  31. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Article  CAS  PubMed  Google Scholar 

  32. Jensen MO, Park S, Tajkhorshid E, Schulten K (2002) Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci U S A 99:6731–6736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  CAS  Google Scholar 

  34. Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309:470–472

    Article  CAS  PubMed  Google Scholar 

  35. Meister M, Lowe G, Berg HC (1987) The proton flux through the bacterial flagellar motor. Cell 49:643–650

    Article  CAS  PubMed  Google Scholar 

  36. Samuel AD, Berg HC (1996) Torque-generating units of the bacterial flagellar motor step independently. Biophys J 71:918–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vonheijne G (1992) Membrane-protein structure prediction—hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  CAS  Google Scholar 

  38. Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  39. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  PubMed  Google Scholar 

  40. Sonnhammer ELL, Gv H, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  41. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  42. Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544

    Article  CAS  PubMed  Google Scholar 

  43. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  44. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  45. Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kitao A, Hirata F, Go N (1991) The effects of solvent on the conformation and the collective motions of protein—normal mode analysis and molecular-dynamics simulations of melittin in water and in vacuum. Chem Phys 158:447–472

    Article  CAS  Google Scholar 

  47. Wolf MG, Hoefling M, Aponte-Santamaria C, Grubmuller H, Groenhof G (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174

    Article  CAS  PubMed  Google Scholar 

  48. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  49. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferrenberg AM, Swendsen RH (1989) Optimized Monte-Carlo data-analysis. Phys Rev Lett 63:1195–1198

    Article  CAS  PubMed  Google Scholar 

  51. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  52. Souaille M, Roux B (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun 135:40–57

    Article  CAS  Google Scholar 

  53. Grossfield A WHAM: the weighted histogram analysis method 2.0.6. http://membrane.urmc.rochester.edu/content/wham

Download references

Acknowledgements

This research was supported by a Grant-in-Aid for Science Research in Innovative Areas (No. JP25104002) and by Grants-in-Aid for Science Research B (No. JP23370066 and No. JP15H04357) from the Japan Society for The Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) to A.K.. This work was also financially supported by Innovative Drug Discovery Infrastructure through Functional Control of Biomolecular Systems, Priority Issue 1 in Post-K Supercomputer Development (Project ID: hp150270) to A.K. The computations were partially performed using the supercomputers at the RCCS, National Institute of Natural Science and ISSP, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Kitao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kitao, A., Nishihara, Y. (2017). Structure of the MotA/B Proton Channel. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics